These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 25004542)

  • 1. Multi-transmit beam forming for fast cardiac imaging--a simulation study.
    Ling Tong ; Hang Gao ; D'hooge J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1719-31. PubMed ID: 25004542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-line transmission combined with minimum variance beamforming in medical ultrasound imaging.
    Rabinovich A; Feuer A; Friedman Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):814-27. PubMed ID: 25965676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-transmit beam forming for fast cardiac imaging--experimental validation and in vivo application.
    Tong L; Ramalli A; Jasaityte R; Tortoli P; D'hooge J
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1205-19. PubMed ID: 24893253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparison of the Performance of Different Multiline Transmit Setups for Fast Volumetric Cardiac Ultrasound.
    Ortega A; Provost J; Tong L; Santos P; Heyde B; Pernot M; D'hooge J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2082-2091. PubMed ID: 27705857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic output of multi-line transmit beamforming for fast cardiac imaging: a simulation study.
    Santos P; Tong L; Ortega A; Løvstakken L; Samset E; D'hooge J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1320-30. PubMed ID: 26168178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: a simulation study.
    Tong L; Gao H; Choi HF; D'hooge J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1654-63. PubMed ID: 22899113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiline Transmit Beamforming Combined With Adaptive Apodization.
    Zurakhov G; Tong L; Ramalli A; Tortoli P; D'hooge J; Friedman Z; Adam D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Apr; 65(4):535-545. PubMed ID: 29610084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi Line Transmit Beamforming Combined With Adaptive Apodization.
    Zurakhov G; Tong L; Ramalli A; Tortoli P; Drhooge J; Friedman Z; Adam D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; ():. PubMed ID: 29994746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of grating lobe artifacts in ultrasound images formed from diverging transmitting beams by modulation of receiving beams.
    Ponnle A; Hasegawa H; Kanai H
    Ultrasound Med Biol; 2013 Apr; 39(4):681-91. PubMed ID: 23415288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Frame-Rate, High Resolution Ultrasound Imaging With Multi-Line Transmission and Filtered-Delay Multiply And Sum Beamforming.
    Matrone G; Ramalli A; Savoia AS; Tortoli P; Magenes G
    IEEE Trans Med Imaging; 2017 Feb; 36(2):478-486. PubMed ID: 28113492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frame-rate echocardiography using diverging transmit beams and parallel receive beamforming.
    Hasegawa H; Kanai H
    J Med Ultrason (2001); 2011 Jul; 38(3):129-40. PubMed ID: 27278500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images.
    Tao Z; Tagare HD; Beaty JD
    IEEE Trans Med Imaging; 2006 Nov; 25(11):1483-91. PubMed ID: 17117777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide-Angle Tissue Doppler Imaging at High Frame Rate Using Multi-Line Transmit Beamforming: An Experimental Validation In Vivo.
    Tong L; Ramalli A; Tortoli P; Fradella G; Caciolli S; Luo J; D'hooge J
    IEEE Trans Med Imaging; 2016 Feb; 35(2):521-8. PubMed ID: 26394417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compounded direct pixel beamforming for medical ultrasound imaging.
    Lee Y; Lee WY; Lim CE; Chang JH; Song TK; Yoo Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):573-82. PubMed ID: 22481795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-line acquisition with delay multiply and sum beamforming in phased array ultrasound imaging, validation of simulation and in vitro.
    Wang Y; Su T; Zhang S
    Ultrasonics; 2019 Jul; 96():123-131. PubMed ID: 30833183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementing capon beamforming on a GPU for real-time cardiac ultrasound imaging.
    Åsen JP; Buskenes JI; Colombo Nilsen CI; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):76-85. PubMed ID: 24402897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A composite high-frame-rate system for clinical cardiovascular imaging.
    Wang S; Lee WN; Provost J; Luo J; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2221-33. PubMed ID: 18986870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers.
    Zhao X; Gang T
    Ultrasonics; 2009 Jan; 49(1):126-30. PubMed ID: 18774152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on application of complementary Golay code into high frame rate ultrasonic imaging system.
    Peng H; Han X; Lu J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e93-6. PubMed ID: 16870224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.