These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 25004749)
1. Heavy metal tolerant halophilic bacteria from Vembanad Lake as possible source for bioremediation of lead and cadmium. Sowmya M; Rejula MP; Rejith PG; Mohan M; Karuppiah M; Hatha AA J Environ Biol; 2014 Jul; 35(4):655-60. PubMed ID: 25004749 [TBL] [Abstract][Full Text] [Related]
2. Bioremediation potential and lead removal capacity of heavy metal-tolerant yeasts isolated from Dayet Oum Ghellaz Lake water (northwest of Algeria). Aibeche C; Selami N; Zitouni-Haouar FE; Oeunzar K; Addou A; Kaid-Harche M; Djabeur A Int Microbiol; 2022 Jan; 25(1):61-73. PubMed ID: 34227024 [TBL] [Abstract][Full Text] [Related]
3. [Isolation, identification and heavy metals biosorption of a lead and cadmium-tolerant strain]. Wang J; Liu X; Wang H; Hu H; Pang L; Huang B; Zhu R Sheng Wu Gong Cheng Xue Bao; 2020 Aug; 36(8):1600-1609. PubMed ID: 32924358 [TBL] [Abstract][Full Text] [Related]
4. Lead and cadmium-resistant bacterial species isolated from heavy metal-contaminated soils show plant growth-promoting traits. Abdollahi S; Golchin A; Shahryari F Int Microbiol; 2020 Nov; 23(4):625-640. PubMed ID: 32533267 [TBL] [Abstract][Full Text] [Related]
5. Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Halttunen T; Salminen S; Tahvonen R Int J Food Microbiol; 2007 Feb; 114(1):30-5. PubMed ID: 17184867 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of halophilic bacteria with the ability of heavy metal bioremediation and nanoparticle synthesis from Khara salt lake in Iran. Diba H; Cohan RA; Salimian M; Mirjani R; Soleimani M; Khodabakhsh F Arch Microbiol; 2021 Sep; 203(7):3893-3903. PubMed ID: 34008070 [TBL] [Abstract][Full Text] [Related]
7. Identification and Characterization of the microbial communities found in electronic industrial effluent and their potential for bioremediation. Manasi ; Tibrewal A; Rajesh N; Rajesh V Ecotoxicol Environ Saf; 2018 Nov; 164():379-387. PubMed ID: 30138821 [TBL] [Abstract][Full Text] [Related]
8. Bacteriological quality, heavy metal and antibiotic resistance in Sapanca Lake, Turkey. Çiftçi Türetken PS; Altuğ G; Çardak M; Güneş K Environ Monit Assess; 2019 Jun; 191(7):469. PubMed ID: 31243556 [TBL] [Abstract][Full Text] [Related]
9. Hydroponic screening of black locust families for heavy metal tolerance and accumulation. Župunski M; Borišev M; Orlović S; Arsenov D; Nikolić N; Pilipović A; Pajević S Int J Phytoremediation; 2016; 18(6):583-91. PubMed ID: 26332106 [TBL] [Abstract][Full Text] [Related]
10. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. De J; Ramaiah N; Vardanyan L Mar Biotechnol (NY); 2008; 10(4):471-7. PubMed ID: 18288535 [TBL] [Abstract][Full Text] [Related]
11. Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites. Mota R; Rossi F; Andrenelli L; Pereira SB; De Philippis R; Tamagnini P Appl Microbiol Biotechnol; 2016 Sep; 100(17):7765-75. PubMed ID: 27188779 [TBL] [Abstract][Full Text] [Related]
12. Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model. Sen SK; Raut S; Dora TK; Mohapatra PK J Hazard Mater; 2014 Jan; 265():47-60. PubMed ID: 24333714 [TBL] [Abstract][Full Text] [Related]
13. Remediation of lead and cadmium-contaminated soils. Salama AK; Osman KA; Gouda NA Int J Phytoremediation; 2016; 18(4):364-7. PubMed ID: 26515924 [TBL] [Abstract][Full Text] [Related]
14. Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Zhuang X; Han Z; Bai Z; Zhuang G; Shim H Environ Pollut; 2010 May; 158(5):1119-26. PubMed ID: 20163899 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution: A mesocosm research. Shamshad I; Khan S; Waqas M; Asma M; Nawab J; Gul N; Raiz A; Li G Int J Phytoremediation; 2016; 18(4):393-8. PubMed ID: 26515662 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of heavy metal inhibition of 1,2-dichloroethane biodegradation in co-contaminated water. Arjoon A; Olaniran AO; Pillay B J Basic Microbiol; 2015 Mar; 55(3):277-84. PubMed ID: 23687001 [TBL] [Abstract][Full Text] [Related]
17. Phytoprotective influence of bacteria on growth and cadmium accumulation in the aquatic plant Lemna minor. Stout LM; Dodova EN; Tyson JF; Nüsslein K Water Res; 2010 Sep; 44(17):4970-9. PubMed ID: 20732704 [TBL] [Abstract][Full Text] [Related]
18. Halotolerant and metalotolerant bacteria strains with heavy metals biorestoration possibilities isolated from Uburu Salt Lake, Southeastern, Nigeria. Orji OU; Awoke JN; Aja PM; Aloke C; Obasi OD; Alum EU; Udu-Ibiam OE; Oka GO Heliyon; 2021 Jul; 7(7):e07512. PubMed ID: 34355076 [TBL] [Abstract][Full Text] [Related]
19. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. Teemu H; Seppo S; Jussi M; Raija T; Kalle L Int J Food Microbiol; 2008 Jul; 125(2):170-5. PubMed ID: 18471917 [TBL] [Abstract][Full Text] [Related]
20. Isolation and screening of heavy metal resistant bacteria from wastewater: a study of heavy metal co-resistance and antibiotics resistance. Yamina B; Tahar B; Marie Laure F Water Sci Technol; 2012; 66(10):2041-8. PubMed ID: 22949232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]