These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25004849)

  • 1. Phosphorus leaching from a sandy soil in the presence of modified and un-modified adsorbents.
    Moharami S; Jalali M
    Environ Monit Assess; 2014 Oct; 186(10):6565-76. PubMed ID: 25004849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified clay mineral: A method for the remediation of the mercury-polluted paddy soil.
    Wang Y; He T; Yin D; Han Y; Zhou X; Zhang G; Tian X
    Ecotoxicol Environ Saf; 2020 Nov; 204():111121. PubMed ID: 32798754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dolomite phosphate rock (DPR) application in acidic sandy soil in reducing leaching of phosphorus and heavy metals-a column leaching study.
    Yang Y; He Z; Yang X; Stoffella PJ
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3843-51. PubMed ID: 23179226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility.
    Hale SE; Arp HPH; Slinde GA; Wade EJ; Bjørseth K; Breedveld GD; Straith BF; Moe KG; Jartun M; Høisæter Å
    Chemosphere; 2017 Mar; 171():9-18. PubMed ID: 28002769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.
    Liang Y; Cao X; Zhao L; Arellano E
    Environ Sci Pollut Res Int; 2014 Mar; 21(6):4665-74. PubMed ID: 24352548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal immobilization and phosphorus leaching after stabilization of pyrite ash contaminated soil by phosphate amendments.
    Zupančič M; Lavrič S; Bukovec P
    J Environ Monit; 2012 Feb; 14(2):704-10. PubMed ID: 22240857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus leaching in soils amended with piggery effluent or lime residues from effluent treatment.
    Weaver DM; Ritchie GS
    Environ Pollut; 1994; 84(3):227-35. PubMed ID: 15091693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient leaching and copper speciation in compost-amended bioretention systems.
    Chahal MK; Shi Z; Flury M
    Sci Total Environ; 2016 Jun; 556():302-9. PubMed ID: 26977536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Winery vermicomposts to control the leaching of diuron, imidacloprid and their metabolites: role of dissolved organic carbon content.
    Fernández-Bayo JD; Nogales R; Romero E
    J Environ Sci Health B; 2015; 50(3):190-200. PubMed ID: 25602152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of phosphorus sorption on calcite by dairy manure-sourced DOC.
    Weyers E; Strawn DG; Peak D; Baker LL
    Chemosphere; 2017 Oct; 184():99-105. PubMed ID: 28582769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil.
    Chen GC; He ZL; Stoffella PJ; Yang XE; Yu S; Calvert D
    Environ Pollut; 2006 Jan; 139(1):176-82. PubMed ID: 16087279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].
    Fu TF; Jia YG; Guo L; Liu XL
    Huan Jing Ke Xue; 2012 Nov; 33(11):3922-6. PubMed ID: 23323426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional analysis of groundwater phosphate concentrations under acidic sandy soils: Edaphic factors and water table strongly mediate the soil P-groundwater P relation.
    Mabilde L; De Neve S; Sleutel S
    J Environ Manage; 2017 Dec; 203(Pt 1):429-438. PubMed ID: 28834776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimizing phosphorus leaching from a sandy clay loam caused by phosphorus fertilizers.
    Jalali M; Jalali M; McDowell RW
    Environ Monit Assess; 2022 Jul; 194(8):587. PubMed ID: 35838852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate and transport of chlormequat in subsurface environments.
    Juhler RK; Henriksen T; Rosenbom AE; Kjaer J
    Environ Sci Pollut Res Int; 2010 Jul; 17(6):1245-56. PubMed ID: 20177799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-Modified Soil Amendments Reduce Nitrogen and Phosphorus Leaching in a Sand-Based Rootzone.
    Shaddox TW; Kruse JK; Miller GL; Nkedi-Kizza P; Sartain JB
    J Environ Qual; 2016 Sep; 45(5):1549-1557. PubMed ID: 27695769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus leaching from biosolids-amended sandy soils.
    Elliott HA; O'Connor GA; Brinton S
    J Environ Qual; 2002; 31(2):681-9. PubMed ID: 11931462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidic leaching of potentially toxic metals cadmium, cobalt, chromium, copper, nickel, lead, and zinc from two Zn smelting slag materials incubated in an acidic soil.
    Liu T; Li F; Jin Z; Yang Y
    Environ Pollut; 2018 Jul; 238():359-368. PubMed ID: 29574360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus saturation and mobilization in two typical Chinese greenhouse vegetable soils.
    Kalkhajeh YK; Huang B; Hu W; Holm PE; Bruun Hansen HC
    Chemosphere; 2017 Apr; 172():316-324. PubMed ID: 28086160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.