BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25004971)

  • 1. Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway.
    Hwang E; Cheong HK; Ul Mushtaq A; Kim HY; Yeo KJ; Kim E; Lee WC; Hwang KY; Cheong C; Jeon YH
    Acta Crystallogr D Biol Crystallogr; 2014 Jul; 70(Pt 7):1944-53. PubMed ID: 25004971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insight into dimeric interaction of the SARAH domains from Mst1 and RASSF family proteins in the apoptosis pathway.
    Hwang E; Ryu KS; Pääkkönen K; Güntert P; Cheong HK; Lim DS; Lee JO; Jeon YH; Cheong C
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9236-41. PubMed ID: 17517604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamic mechanism of RASSF5 and MST kinase activation by Ras.
    Liao TJ; Jang H; Tsai CJ; Fushman D; Nussinov R
    Phys Chem Chem Phys; 2017 Mar; 19(9):6470-6480. PubMed ID: 28197608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of MST2 SARAH domain provides insights into its interaction with RAPL.
    Liu G; Shi Z; Jiao S; Zhang Z; Wang W; Chen C; Hao Q; Zhang M; Feng M; Xu L; Zhang Z; Zhou Z; Zhang M
    J Struct Biol; 2014 Mar; 185(3):366-74. PubMed ID: 24468289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and thermodynamic characterization of Nore1-SARAH: a small, helical module important in signal transduction networks.
    Makbul C; Constantinescu Aruxandei D; Hofmann E; Schwarz D; Wolf E; Herrmann C
    Biochemistry; 2013 Feb; 52(6):1045-54. PubMed ID: 23331050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MST2-RASSF protein-protein interactions through SARAH domains.
    Sánchez-Sanz G; Matallanas D; Nguyen LK; Kholodenko BN; Rosta E; Kolch W; Buchete NV
    Brief Bioinform; 2016 Jul; 17(4):593-602. PubMed ID: 26443615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SARAH Domain-Mediated MST2-RASSF Dimeric Interactions.
    Sánchez-Sanz G; Tywoniuk B; Matallanas D; Romano D; Nguyen LK; Kholodenko BN; Rosta E; Kolch W; Buchete NV
    PLoS Comput Biol; 2016 Oct; 12(10):e1005051. PubMed ID: 27716844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for autoactivation of human Mst2 kinase and its regulation by RASSF5.
    Ni L; Li S; Yu J; Min J; Brautigam CA; Tomchick DR; Pan D; Luo X
    Structure; 2013 Oct; 21(10):1757-68. PubMed ID: 23972470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RASSF5: An MST activator and tumor suppressor in vivo but opposite in vitro.
    Liao TJ; Tsai CJ; Jang H; Fushman D; Nussinov R
    Curr Opin Struct Biol; 2016 Dec; 41():217-224. PubMed ID: 27643882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical characterization of SARAH domain-mediated multimerization of Hippo pathway complexes in
    Cairns L; Patterson A; Weingartner KA; Koehler TJ; DeAngelis DR; Tripp KW; Bothner B; Kavran JM
    J Biol Chem; 2020 May; 295(18):6202-6213. PubMed ID: 32213597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H-ras Inhibits the Hippo Pathway by Promoting Mst1/Mst2 Heterodimerization.
    Rawat SJ; Araiza-Olivera D; Arias-Romero LE; Villamar-Cruz O; Prudnikova TY; Roder H; Chernoff J
    Curr Biol; 2016 Jun; 26(12):1556-1563. PubMed ID: 27238285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of MST complexes and activity via SARAH domain modifications.
    Karchugina S; Benton D; Chernoff J
    Biochem Soc Trans; 2021 Apr; 49(2):675-683. PubMed ID: 33860801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rassf Proteins as Modulators of Mst1 Kinase Activity.
    Bitra A; Sistla S; Mariam J; Malvi H; Anand R
    Sci Rep; 2017 Mar; 7():45020. PubMed ID: 28327630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimerization-induced folding of MST1 SARAH and the influence of the intrinsically unstructured inhibitory domain: low thermodynamic stability of monomer.
    Constantinescu Aruxandei D; Makbul C; Koturenkiene A; Lüdemann MB; Herrmann C
    Biochemistry; 2011 Dec; 50(51):10990-1000. PubMed ID: 22112013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low pH-driven folding of WW45-SARAH domain leads to stabilization of the WW45-Mst2 complex.
    Song J; Hong HR; Yamashita E; Park IY; Lee SJ
    J Biochem; 2015 Sep; 158(3):181-8. PubMed ID: 25814670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimerization and autophosphorylation of the MST family of kinases are controlled by the same set of residues.
    Weingartner KA; Tran T; Tripp KW; Kavran JM
    Biochem J; 2023 Aug; 480(15):1165-1182. PubMed ID: 37459121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salvador has an extended SARAH domain that mediates binding to Hippo kinase.
    Cairns L; Tran T; Fowl BH; Patterson A; Kim YJ; Bothner B; Kavran JM
    J Biol Chem; 2018 Apr; 293(15):5532-5543. PubMed ID: 29519817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nore1 and RASSF1 regulation of cell proliferation and of the MST1/2 kinases.
    Avruch J; Praskova M; Ortiz-Vega S; Liu M; Zhang XF
    Methods Enzymol; 2006; 407():290-310. PubMed ID: 16757333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncanonical Hippo Signalling in the Regulation of Leukocyte Function.
    Kurz ARM; Catz SD; Sperandio M
    Trends Immunol; 2018 Aug; 39(8):656-669. PubMed ID: 29954663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Hippo kinases control inflammatory Hippo signaling and restrict bacterial infection in phagocytes.
    St Louis BM; Quagliato SM; Su Y-T; Dyson G; Lee P-C
    mBio; 2024 May; 15(5):e0342923. PubMed ID: 38624208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.