BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 25005151)

  • 1. Large scale production of yolk-shell β-tricalcium phosphate powders, and their bioactivities as novel bone substitutes.
    Cho JS; Lee JH; Kang YC
    Phys Chem Chem Phys; 2014 Aug; 16(32):16962-7. PubMed ID: 25005151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.
    Choi SH; Kang YC
    Chemistry; 2014 May; 20(19):5835-9. PubMed ID: 24665070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications.
    Miranda P; Saiz E; Gryn K; Tomsia AP
    Acta Biomater; 2006 Jul; 2(4):457-66. PubMed ID: 16723287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate.
    Torres PM; Vieira SI; Cerqueira AR; Pina S; da Cruz Silva OA; Abrantes JC; Ferreira JM
    J Inorg Biochem; 2014 Jul; 136():57-66. PubMed ID: 24747361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evaluation of biocompatibility of beta-tricalcium phosphate-reinforced high-density polyethylene; an orthopedic composite.
    Homaeigohar SSh; Shokrgozar MA; Sadi AY; Khavandi A; Javadpour J; Hosseinalipour M
    J Biomed Mater Res A; 2005 Oct; 75(1):14-22. PubMed ID: 16092112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calorimetry investigations of milled α-tricalcium phosphate (α-TCP) powders to determine the formation enthalpies of α-TCP and X-ray amorphous tricalcium phosphate.
    Hurle K; Neubauer J; Bohner M; Doebelin N; Goetz-Neunhoeffer F
    Acta Biomater; 2015 Sep; 23():338-346. PubMed ID: 26026302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo.
    Xin R; Leng Y; Chen J; Zhang Q
    Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoclastic resorption of calcium phosphate coatings applied with electrostatic spray deposition (ESD), in vitro.
    Siebers MC; Matsuzaka K; Walboomers XF; Leeuwenburgh SC; Wolke JG; Jansen JA
    J Biomed Mater Res A; 2005 Sep; 74(4):570-80. PubMed ID: 16025470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The increase of apatite layer formation by the poly(3-hydroxybutyrate) surface modification of hydroxyapatite and β-tricalcium phosphate.
    Szubert M; Adamska K; Szybowicz M; Jesionowski T; Buchwald T; Voelkel A
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():236-44. PubMed ID: 24268255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure and chemistry affects apatite nucleation on calcium phosphate bone graft substitutes.
    Campion CR; Ball SL; Clarke DL; Hing KA
    J Mater Sci Mater Med; 2013 Mar; 24(3):597-610. PubMed ID: 23242766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ball milling on the processing of bone substitutes with calcium phosphate powders.
    Bignon A; Chevalier J; Fantozzi G
    J Biomed Mater Res; 2002; 63(5):619-26. PubMed ID: 12209909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical properties of yolk-shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery.
    Won JM; Choi SH; Hong YJ; Ko YN; Kang YC
    Sci Rep; 2014 Aug; 4():5857. PubMed ID: 25168407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of single-phase silicon-substituted alpha-tricalcium phosphate.
    Reid JW; Tuck L; Sayer M; Fargo K; Hendry JA
    Biomaterials; 2006 May; 27(15):2916-25. PubMed ID: 16448694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro bioactivity and degradability of β-tricalcium phosphate porous scaffold fabricated via selective laser sintering.
    Shuai C; Zhuang J; Hu H; Peng S; Liu D; Liu J
    Biotechnol Appl Biochem; 2013; 60(2):266-73. PubMed ID: 23600577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed nano/micro-sized calcium phosphate composite and EDTA root surface etching improve availability of graft material in intrabony defects: an in vivo scanning electron microscopy evaluation.
    Gamal AY; Iacono VJ
    J Periodontol; 2013 Dec; 84(12):1730-9. PubMed ID: 23451990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells.
    Tămăşan M; Ozyegin LS; Oktar FN; Simon V
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2569-77. PubMed ID: 23623070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants.
    Zhang Y; Zhang M
    J Biomed Mater Res; 2002 Jul; 61(1):1-8. PubMed ID: 12001239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.