These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 25005178)

  • 1. Perspectives on tuberculosis pathogenesis and discovery of anti- tubercular drugs.
    Ntie-Kang F; Yong JN; Owono Owono LC; Sippl W; Megnassan E
    Curr Med Chem; 2014; 21(30):3466-77. PubMed ID: 25005178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New perspectives on natural products in TB drug research.
    Pauli GF; Case RJ; Inui T; Wang Y; Cho S; Fischer NH; Franzblau SG
    Life Sci; 2005 Dec; 78(5):485-94. PubMed ID: 16243360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opportunities and Challenges for Natural Products as Novel Antituberculosis Agents.
    Farah SI; Abdelrahman AA; North EJ; Chauhan H
    Assay Drug Dev Technol; 2016; 14(1):29-38. PubMed ID: 26565779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model to predict anti-tuberculosis activity: value proposition for marine microorganisms.
    Liu M; Grkovic T; Zhang L; Liu X; Quinn RJ
    J Antibiot (Tokyo); 2016 Aug; 69(8):594-9. PubMed ID: 27406906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycobacterium tuberculosis-Secreted Tyrosine Phosphatases as Targets Against Tuberculosis: Exploring Natural Sources in Searching for New Drugs.
    Mascarello A; Chiaradia-Delatorre LD; Mori M; Terenzi H; Botta B
    Curr Pharm Des; 2016; 22(12):1561-9. PubMed ID: 26759082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered drug efflux under iron deprivation unveils abrogated MmpL3 driven mycolic acid transport and fluidity in mycobacteria.
    Pal R; Hameed S; Fatima Z
    Biometals; 2019 Feb; 32(1):49-63. PubMed ID: 30430296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoniazid derivatives and their anti-tubercular activity.
    Hu YQ; Zhang S; Zhao F; Gao C; Feng LS; Lv ZS; Xu Z; Wu X
    Eur J Med Chem; 2017 Jun; 133():255-267. PubMed ID: 28390957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-tubercular agents. Part 3. Benzothiadiazine as a novel scaffold for anti-Mycobacterium activity.
    Kamal A; Reddy KS; Ahmed SK; Khan MN; Sinha RK; Yadav JS; Arora SK
    Bioorg Med Chem; 2006 Feb; 14(3):650-8. PubMed ID: 16203154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuberculosis: An Inorganic Medicinal Chemistry Perspective.
    Viganor L; Skerry C; McCann M; Devereux M
    Curr Med Chem; 2015; 22(18):2199-224. PubMed ID: 25850770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead.
    Grotz E; Tateosian N; Amiano N; Cagel M; Bernabeu E; Chiappetta DA; Moretton MA
    Pharm Res; 2018 Sep; 35(11):213. PubMed ID: 30238168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting natural product value, an exploration of anti-TB drug space.
    Dashti Y; Grkovic T; Quinn RJ
    Nat Prod Rep; 2014 Aug; 31(8):990-8. PubMed ID: 24881816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic Signatures Predict Regulators of Drug Synergy and Clinical Regimen Efficacy against Tuberculosis.
    Ma S; Jaipalli S; Larkins-Ford J; Lohmiller J; Aldridge BB; Sherman DR; Chandrasekaran S
    mBio; 2019 Nov; 10(6):. PubMed ID: 31719182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances of pyrazole-containing derivatives as anti-tubercular agents.
    Xu Z; Gao C; Ren QC; Song XF; Feng LS; Lv ZS
    Eur J Med Chem; 2017 Oct; 139():429-440. PubMed ID: 28818767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents.
    Evans JC; Mizrahi V
    Curr Opin Microbiol; 2018 Oct; 45():39-46. PubMed ID: 29482115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon.
    Bhat ZS; Rather MA; Maqbool M; Ahmad Z
    Biomed Pharmacother; 2018 Jul; 103():1733-1747. PubMed ID: 29864964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereochemistry at the forefront in the design and discovery of novel anti-tuberculosis agents.
    Huang Q; He R; Kozikowski AP
    Curr Top Med Chem; 2011; 11(7):810-8. PubMed ID: 21291395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neoteric advancement in TB drugs and an overview on the anti-tubercular role of peptides through computational approaches.
    Khusro A; Aarti C; Barbabosa-Pliego A; Salem AZM
    Microb Pathog; 2018 Jan; 114():80-89. PubMed ID: 29174699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluoroquinolone derivatives and their anti-tubercular activities.
    Fan YL; Wu JB; Cheng XW; Zhang FZ; Feng LS
    Eur J Med Chem; 2018 Feb; 146():554-563. PubMed ID: 29407980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.