These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25005278)

  • 21. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Input vector optimization of feed-forward neural networks for fitting ab initio potential-energy databases.
    Malshe M; Raff LM; Hagan M; Bukkapatnam S; Komanduri R
    J Chem Phys; 2010 May; 132(20):204103. PubMed ID: 20515084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auxiliary basis expansions for large-scale electronic structure calculations.
    Jung Y; Sodt A; Gill PM; Head-Gordon M
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6692-7. PubMed ID: 15845767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ab initio-based global double many-body expansion potential energy surface for the first 2A" electronic state of NO2.
    Mota VC; Caridade PJ; Varandas AJ
    J Phys Chem A; 2012 Mar; 116(11):3023-34. PubMed ID: 22332971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast electron correlation methods for molecular clusters without basis set superposition errors.
    Kamiya M; Hirata S; Valiev M
    J Chem Phys; 2008 Feb; 128(7):074103. PubMed ID: 18298136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular tailoring approach in conjunction with MP2 and Ri-MP2 codes: A comparison with fragment molecular orbital method.
    Rahalkar AP; Katouda M; Gadre SR; Nagase S
    J Comput Chem; 2010 Oct; 31(13):2405-18. PubMed ID: 20652984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis.
    Neese F; Hansen A; Liakos DG
    J Chem Phys; 2009 Aug; 131(6):064103. PubMed ID: 19691374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate double many-body expansion potential energy surface for N3((4)A'') from correlation scaled ab initio energies with extrapolation to the complete basis set limit.
    Galvão BR; Varandas AJ
    J Phys Chem A; 2009 Dec; 113(52):14424-30. PubMed ID: 19681622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds.
    Kurashige Y; Yanai T
    J Chem Phys; 2009 Jun; 130(23):234114. PubMed ID: 19548718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications and assessment of QM:QM electronic embedding using generalized asymmetric Mulliken atomic charges.
    Parandekar PV; Hratchian HP; Raghavachari K
    J Chem Phys; 2008 Oct; 129(14):145101. PubMed ID: 19045166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extrapolating to the one-electron basis-set limit in electronic structure calculations.
    Varandas AJ
    J Chem Phys; 2007 Jun; 126(24):244105. PubMed ID: 17614535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy.
    Wang X; Liu J; Zhang JZ; He X
    J Phys Chem A; 2013 Aug; 117(32):7149-61. PubMed ID: 23452268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Treatment of dilute clusters of methanol and water by ab initio quantum mechanical calculations.
    Ruckenstein E; Shulgin IL; Tilson JL
    J Phys Chem A; 2005 Feb; 109(5):807-15. PubMed ID: 16838951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ab initio investigation of benzene clusters: molecular tailoring approach.
    Mahadevi AS; Rahalkar AP; Gadre SR; Sastry GN
    J Chem Phys; 2010 Oct; 133(16):164308. PubMed ID: 21033789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.
    Fox SJ; Pittock C; Tautermann CS; Fox T; Christ C; Malcolm NO; Essex JW; Skylaris CK
    J Phys Chem B; 2013 Aug; 117(32):9478-85. PubMed ID: 23841453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structures and electronic states of zinc-water clusters Zn(n)(H2O)(m) (n = 1-32 and m = 1-3).
    Tachikawa H; Iokibe K; Azumi K; Kawabata H
    Phys Chem Chem Phys; 2007 Aug; 9(30):3978-84. PubMed ID: 17646886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Appraisal of molecular tailoring approach for large clusters.
    Sahu N; Yeole SD; Gadre SR
    J Chem Phys; 2013 Mar; 138(10):104101. PubMed ID: 23514459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.