These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 25005279)

  • 1. Spin dynamics simulation of electron spin relaxation in Ni²⁺(aq).
    Rantaharju J; Mareš J; Vaara J
    J Chem Phys; 2014 Jul; 141(1):014109. PubMed ID: 25005279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear and electron spin relaxation in paramagnetic complexes in solution: effects of the quantum nature of molecular vibrations.
    Kruk D; Kowalewski J; Westlund PO
    J Chem Phys; 2004 Aug; 121(5):2215-27. PubMed ID: 15260776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct calculation of (1)H(2)O T(1) NMRD profiles and EPR lineshapes for the electron spin quantum numbers S = 1, 3/2, 2, 5/2, 3, 7/2, based on the stochastic Liouville equation combined with Brownian dynamics simulation.
    Aman K; Westlund PO
    Phys Chem Chem Phys; 2007 Feb; 9(6):691-700. PubMed ID: 17268680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach.
    Zamar RC; Mensio O
    J Chem Phys; 2004 Dec; 121(23):11927-41. PubMed ID: 15634155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).
    Mareš J; Hanni M; Lantto P; Lounila J; Vaara J
    Phys Chem Chem Phys; 2014 Apr; 16(15):6916-24. PubMed ID: 24595457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic Properties of Ni(2+)(aq) from First Principles.
    Mareš J; Liimatainen H; Pennanen TO; Vaara J
    J Chem Theory Comput; 2011 Oct; 7(10):3248-60. PubMed ID: 26598159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning.
    Mance D; Gast P; Huber M; Baldus M; Ivanov KL
    J Chem Phys; 2015 Jun; 142(23):234201. PubMed ID: 26093552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct simulation of magnetic resonance relaxation rates and line shapes from molecular trajectories.
    Rangel DP; Baveye PC; Robinson BH
    J Phys Chem B; 2012 Jun; 116(22):6233-49. PubMed ID: 22540276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of different methods for calculating the paramagnetic relaxation enhancement of nuclear spins as a function of the magnetic field.
    Belorizky E; Fries PH; Helm L; Kowalewski J; Kruk D; Sharp RR; Westlund PO
    J Chem Phys; 2008 Feb; 128(5):052315. PubMed ID: 18266432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cu(II)-porphyrin molecular dynamics as seen in a novel EPR/Stochastic Liouville equation study.
    Håkansson P; Nguyen T; Nair PB; Edge R; Stulz E
    Phys Chem Chem Phys; 2013 Jul; 15(26):10930-41. PubMed ID: 23703288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-Electron Cross-Relaxation and Spectral Diffusion during Dynamic Nuclear Polarization Experiments on Solids.
    Kundu K; Feintuch A; Vega S
    J Phys Chem Lett; 2018 Apr; 9(7):1793-1802. PubMed ID: 29553271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion of a disordered polypeptide chain as studied by paramagnetic relaxation enhancements, 15N relaxation, and molecular dynamics simulations: how fast is segmental diffusion in denatured ubiquitin?
    Xue Y; Skrynnikov NR
    J Am Chem Soc; 2011 Sep; 133(37):14614-28. PubMed ID: 21819149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.
    Pribitzer S; Doll A; Jeschke G
    J Magn Reson; 2016 Feb; 263():45-54. PubMed ID: 26773526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of nitrogen nuclear spin magnetization of liquid solved nitroxides.
    Marko A; Sojka A; Laguta O; Neugebauer P
    Phys Chem Chem Phys; 2021 Aug; 23(32):17310-17322. PubMed ID: 34346404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paramagnetic relaxation of protons in rotationally immobilized proteins.
    Korb JP; Diakova G; Bryant RG
    J Chem Phys; 2006 Apr; 124(13):134910. PubMed ID: 16613480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics.
    Veshtort M; Griffin RG
    J Chem Phys; 2011 Oct; 135(13):134509. PubMed ID: 21992326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic quantum tunneling: insights from simple molecule-based magnets.
    Hill S; Datta S; Liu J; Inglis R; Milios CJ; Feng PL; Henderson JJ; del Barco E; Brechin EK; Hendrickson DN
    Dalton Trans; 2010 May; 39(20):4693-707. PubMed ID: 20405069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating slow-motional electron paramagnetic resonance spectra from molecular dynamics using a diffusion operator approach.
    Budil DE; Sale KL; Khairy KA; Fajer PG
    J Phys Chem A; 2006 Mar; 110(10):3703-13. PubMed ID: 16526654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretation of 1H and 2H spin-lattice relaxation dispersions: insights from molecular dynamics simulations of polymer melts.
    Henritzi P; Bormuth A; Vogel M
    Solid State Nucl Magn Reson; 2013; 54():32-40. PubMed ID: 23830720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate quadrupolar NMR relaxation rates of aqueous cations from classical molecular dynamics.
    Carof A; Salanne M; Charpentier T; Rotenberg B
    J Phys Chem B; 2014 Nov; 118(46):13252-7. PubMed ID: 25340813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.