These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 25005290)
1. Electron drift velocities in He and water mixtures: measurements and an assessment of the water vapour cross-section sets. de Urquijo J; Basurto E; Juárez AM; Ness KF; Robson RE; Brunger MJ; White RD J Chem Phys; 2014 Jul; 141(1):014308. PubMed ID: 25005290 [TBL] [Abstract][Full Text] [Related]
2. Self-consistency of electron-THF cross sections using electron swarm techniques. Casey MJE; de Urquijo J; Serkovic Loli LN; Cocks DG; Boyle GJ; Jones DB; Brunger MJ; White RD J Chem Phys; 2017 Nov; 147(19):195103. PubMed ID: 29166101 [TBL] [Abstract][Full Text] [Related]
3. Transport coefficients for electrons in water vapor: definition, measurement, and calculation. Robson RE; White RD; Ness KF J Chem Phys; 2011 Feb; 134(6):064319. PubMed ID: 21322692 [TBL] [Abstract][Full Text] [Related]
4. Transport coefficients and cross sections for electrons in water vapour: comparison of cross section sets using an improved Boltzmann equation solution. Ness KF; Robson RE; Brunger MJ; White RD J Chem Phys; 2012 Jan; 136(2):024318. PubMed ID: 22260590 [TBL] [Abstract][Full Text] [Related]
5. Electron drift velocities in mixtures of helium and xenon and experimental verification of corrections to Blanc's law. Sasić O; Jovanović J; Petrović ZLj; de Urquijo J; Castrejón-Pita JR; Hernández-Avila JL; Basurto E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046408. PubMed ID: 15903795 [TBL] [Abstract][Full Text] [Related]
6. Differential elastic electron scattering cross sections for CCl4 by 1.5-100 eV energy electron impact. Limão-Vieira P; Horie M; Kato H; Hoshino M; Blanco F; García G; Buckman SJ; Tanaka H J Chem Phys; 2011 Dec; 135(23):234309. PubMed ID: 22191877 [TBL] [Abstract][Full Text] [Related]
7. An improved set of electron-THFA cross sections refined through a neural network-based analysis of swarm data. Stokes PW; Foster SP; Casey MJE; Cocks DG; González-Magaña O; de Urquijo J; García G; Brunger MJ; White RD J Chem Phys; 2021 Feb; 154(8):084306. PubMed ID: 33639749 [TBL] [Abstract][Full Text] [Related]
8. Electron interaction with nitromethane embedded in helium droplets: attachment and ionization measurements. Ferreira da Silva F; Ptasińska S; Denifl S; Gschliesser D; Postler J; Matias C; Märk TD; Limão-Vieira P; Scheier P J Chem Phys; 2011 Nov; 135(17):174504. PubMed ID: 22070303 [TBL] [Abstract][Full Text] [Related]
9. Ionization of doped helium nanodroplets: complexes of C60 with water clusters. Denifl S; Zappa F; Mähr I; Mauracher A; Probst M; Urban J; Mach P; Bacher A; Bohme DK; Echt O; Märk TD; Scheier P J Chem Phys; 2010 Jun; 132(23):234307. PubMed ID: 20572705 [TBL] [Abstract][Full Text] [Related]
10. Low energy elastic differential electron scattering from H2O. Silva H; Muse J; Lopes MC; Khakoo MA Phys Rev Lett; 2008 Jul; 101(3):033201. PubMed ID: 18764253 [TBL] [Abstract][Full Text] [Related]
11. Steric asymmetry and lambda-doublet propensities in state-to-state rotationally inelastic scattering of NO(2Pi(1/2)) with He. de Lange MJ; Stolte S; Taatjes CA; Kłos J; Groenenboom GC; van der Avoird A J Chem Phys; 2004 Dec; 121(23):11691-701. PubMed ID: 15634135 [TBL] [Abstract][Full Text] [Related]
13. Toward a complete and comprehensive cross section database for electron scattering from NO using machine learning. Stokes PW; White RD; Campbell L; Brunger MJ J Chem Phys; 2021 Aug; 155(8):084305. PubMed ID: 34470353 [TBL] [Abstract][Full Text] [Related]
14. Electron impact ionization of liquid and gaseous water: a single-center partial-wave approach. Champion C Phys Med Biol; 2010 Jan; 55(1):11-32. PubMed ID: 19949258 [TBL] [Abstract][Full Text] [Related]
15. Electronically excited rubidium atom in helium clusters and films. II. Second excited state and absorption spectrum. Leino M; Viel A; Zillich RE J Chem Phys; 2011 Jan; 134(2):024316. PubMed ID: 21241108 [TBL] [Abstract][Full Text] [Related]
16. Electronic stopping power in gold: the role of d electrons and the H/He anomaly. Zeb MA; Kohanoff J; Sánchez-Portal D; Arnau A; Juaristi JI; Artacho E Phys Rev Lett; 2012 Jun; 108(22):225504. PubMed ID: 23003620 [TBL] [Abstract][Full Text] [Related]
17. High-LET radiolysis of liquid water with 1H+, 4He2+, 12C6+, and 20Ne9+ ions: effects of multiple ionization. Meesungnoen J; Jay-Gerin JP J Phys Chem A; 2005 Jul; 109(29):6406-19. PubMed ID: 16833985 [TBL] [Abstract][Full Text] [Related]
18. Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1-10 keV range based on an improved dielectric description of the Bethe surface. Emfietzoglou D; Nikjoo H Radiat Res; 2007 Jan; 167(1):110-20. PubMed ID: 17214512 [TBL] [Abstract][Full Text] [Related]
19. Franck-Condon effects in collision-induced electronic energy transfer: I2(E; v = 1,2) + He, Ar. Chandra PP; Stephenson TA J Chem Phys; 2004 Aug; 121(7):2985-91. PubMed ID: 15291608 [TBL] [Abstract][Full Text] [Related]
20. Intracule functional models. Part III. The dot intracule and its Fourier transform. Bernard YA; Crittenden DL; Gill PM Phys Chem Chem Phys; 2008 Jun; 10(23):3447-53. PubMed ID: 18535728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]