BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25005302)

  • 1. Thermal resistance at an interface between a crystal and its melt.
    Liang Z; Evans WJ; Keblinski P
    J Chem Phys; 2014 Jul; 141(1):014706. PubMed ID: 25005302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical origins of temperature continuity at an interface between a crystal and its melt.
    Vo TQ; Kim B
    J Chem Phys; 2018 Jan; 148(3):034703. PubMed ID: 29352797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nonlinear interfacial kinetics and interfacial thermal resistance in planar solidification.
    Palmieri B; Ward CA; Dejmek M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051605. PubMed ID: 23214791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Kapitza resistance at fluid-solid interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2019 Nov; 151(19):194502. PubMed ID: 31757152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulation study of surface wave dynamics at the crystal-melt interface.
    Benet J; MacDowell LG; Sanz E
    J Chem Phys; 2014 Jul; 141(3):034701. PubMed ID: 25053328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thermal boundary resistance at semiconductor interfaces: a critical appraisal of the Onsager vs. Kapitza formalisms.
    Rurali R; Cartoixà X; Bedeaux D; Kjelstrup S; Colombo L
    Phys Chem Chem Phys; 2018 Sep; 20(35):22623-22628. PubMed ID: 30131997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct calculation of the crystal-melt interfacial free energy via molecular dynamics computer simulation.
    Laird BB; Davidchack RL
    J Phys Chem B; 2005 Sep; 109(38):17802-12. PubMed ID: 16853283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of molecular film thickness on thermal conduction across solid-film interfaces.
    Liang Z; Tsai HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061603. PubMed ID: 21797376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic simulation study of the structure and dynamics of a faceted crystal-melt interface.
    Buta D; Asta M; Hoyt JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031605. PubMed ID: 18851047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic interfacial free energies of the hard-sphere crystal-melt interfaces.
    Mu Y; Houk A; Song X
    J Phys Chem B; 2005 Apr; 109(14):6500-4. PubMed ID: 16851729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal transport at a solid-nanofluid interface: from increase of thermal resistance towards a shift of rapid boiling.
    Han H; Merabia S; Müller-Plathe F
    Nanoscale; 2017 Jun; 9(24):8314-8320. PubMed ID: 28585964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of the crystal-melt interfacial free energy of succinonitrile from molecular simulation.
    Feng X; Laird BB
    J Chem Phys; 2006 Jan; 124(4):044707. PubMed ID: 16460200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating thermal resistance at the solid-fluid interface through monolayer deposition.
    Hasan MR; Vo TQ; Kim B
    RSC Adv; 2019 Feb; 9(9):4948-4956. PubMed ID: 35514672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermostat-induced spurious interfacial resistance in non-equilibrium molecular dynamics simulations of solid-liquid and solid-solid systems.
    Ghatage D; Tomar G; Shukla RK
    J Chem Phys; 2020 Oct; 153(16):164110. PubMed ID: 33138391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental-measure density functional theory study of the crystal-melt interface of the hard sphere system.
    Warshavsky VB; Song X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031110. PubMed ID: 16605503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial thermal conduction and negative temperature jump in one-dimensional lattices.
    Cao X; He D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032135. PubMed ID: 26465454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kapitza resistance at water-graphene interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2020 Jun; 152(22):224703. PubMed ID: 32534537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces.
    Lin S; Buehler MJ
    Nanotechnology; 2013 Apr; 24(16):165702. PubMed ID: 23535514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.