These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25005471)

  • 1. Harnessing developmental processes for vascular engineering and regeneration.
    Park KM; Gerecht S
    Development; 2014 Jul; 141(14):2760-9. PubMed ID: 25005471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental approaches to vascularisation within tissue engineering constructs.
    Sarker M; Chen XB; Schreyer DJ
    J Biomater Sci Polym Ed; 2015; 26(12):683-734. PubMed ID: 26053971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.
    Akar B; Jiang B; Somo SI; Appel AA; Larson JC; Tichauer KM; Brey EM
    Biomaterials; 2015 Dec; 72():61-73. PubMed ID: 26344364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly.
    Bashur CA; Venkataraman L; Ramamurthi A
    Tissue Eng Part B Rev; 2012 Jun; 18(3):203-17. PubMed ID: 22224468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks.
    Rouwkema J; Khademhosseini A
    Trends Biotechnol; 2016 Sep; 34(9):733-745. PubMed ID: 27032730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels.
    He S; Xia T; Wang H; Wei L; Luo X; Li X
    Acta Biomater; 2012 Jul; 8(7):2659-69. PubMed ID: 22484697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular regulation of vessel maturation.
    Jain RK
    Nat Med; 2003 Jun; 9(6):685-93. PubMed ID: 12778167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct-write and sacrifice-based techniques for vasculatures.
    Li S; Wang K; Hu Q; Zhang C; Wang B
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109936. PubMed ID: 31500055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors.
    Sun G; Shen YI; Kusuma S; Fox-Talbot K; Steenbergen CJ; Gerecht S
    Biomaterials; 2011 Jan; 32(1):95-106. PubMed ID: 20870284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering vascular networks in porous polymer matrices.
    Peters MC; Polverini PJ; Mooney DJ
    J Biomed Mater Res; 2002 Jun; 60(4):668-78. PubMed ID: 11948526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding angiogenesis and the role of angiogenic growth factors in the vascularisation of engineered tissues.
    Omorphos NP; Gao C; Tan SS; Sangha MS
    Mol Biol Rep; 2021 Jan; 48(1):941-950. PubMed ID: 33393005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro models of angiogenesis.
    Ucuzian AA; Greisler HP
    World J Surg; 2007 Apr; 31(4):654-63. PubMed ID: 17372665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascularization--the conduit to viable engineered tissues.
    Kaully T; Kaufman-Francis K; Lesman A; Levenberg S
    Tissue Eng Part B Rev; 2009 Jun; 15(2):159-69. PubMed ID: 19309238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation.
    Lopes SV; Collins MN; Reis RL; Oliveira JM; Silva-Correia J
    ACS Appl Bio Mater; 2021 Apr; 4(4):2941-2956. PubMed ID: 35014385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.
    Kant RJ; Coulombe KLK
    Acta Biomater; 2018 Mar; 69():42-62. PubMed ID: 29371132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering.
    Rather HA; Jhala D; Vasita R
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109761. PubMed ID: 31349418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adipose tissue and the vascularization of biomaterials: Stem cells, microvascular fragments and nanofat-a review.
    Kamat P; Frueh FS; McLuckie M; Sanchez-Macedo N; Wolint P; Lindenblatt N; Plock JA; Calcagni M; Buschmann J
    Cytotherapy; 2020 Aug; 22(8):400-411. PubMed ID: 32507607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering.
    Arulmoli J; Wright HJ; Phan DTT; Sheth U; Que RA; Botten GA; Keating M; Botvinick EL; Pathak MM; Zarembinski TI; Yanni DS; Razorenova OV; Hughes CCW; Flanagan LA
    Acta Biomater; 2016 Oct; 43():122-138. PubMed ID: 27475528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a composite biomaterial system for tissue engineering applications.
    Jiang B; Akar B; Waller TM; Larson JC; Appel AA; Brey EM
    Acta Biomater; 2014 Mar; 10(3):1177-86. PubMed ID: 24321351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF.
    Nillesen ST; Geutjes PJ; Wismans R; Schalkwijk J; Daamen WF; van Kuppevelt TH
    Biomaterials; 2007 Feb; 28(6):1123-31. PubMed ID: 17113636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.