These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25005779)

  • 1. Optimization and characterization of curcumin loaded in octenylsuccinate oat β-glucan micelles with an emphasis on degree of substitution and molecular weight.
    Liu J; Chen F; Tian W; Ma Y; Li J; Zhao G
    J Agric Food Chem; 2014 Jul; 62(30):7532-40. PubMed ID: 25005779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization, and aqueous self-assembly of octenylsuccinate Oat β-glucan.
    Liu J; Li J; Ma Y; Chen F; Zhao G
    J Agric Food Chem; 2013 Dec; 61(51):12683-91. PubMed ID: 24313441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of fatty acid oat β-glucan ester and its structure-curcumin loading capacity relationship.
    Chen F; Liu J; Ye F; Zhao G
    J Agric Food Chem; 2014 Dec; 62(50):12256-64. PubMed ID: 25429377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of grafted xyloglucan micelles for pulmonary delivery of curcumin: In vitro and in vivo studies.
    Mahajan HS; Mahajan PR
    Int J Biol Macromol; 2016 Jan; 82():621-7. PubMed ID: 26432365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of single and aggregated hulless oat (Avena nuda L.) (1-->3),(1-->4)-beta-D-glucan molecules by atomic force microscopy and confocal scanning laser microscopy.
    Wu J; Zhang Y; Wang L; Xie B; Wang H; Deng S
    J Agric Food Chem; 2006 Feb; 54(3):925-34. PubMed ID: 16448204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel chitosan-derived nanomaterials and their micelle-forming properties.
    Zhang C; Ding Y; Ping Q; Yu LL
    J Agric Food Chem; 2006 Nov; 54(22):8409-16. PubMed ID: 17061814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications.
    Sahu A; Kasoju N; Goswami P; Bora U
    J Biomater Appl; 2011 Feb; 25(6):619-39. PubMed ID: 20207782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positively charged amphiphilic chitosan derivative for the transscleral delivery of rapamycin.
    Elsaid N; Jackson TL; Gunic M; Somavarapu S
    Invest Ophthalmol Vis Sci; 2012 Dec; 53(13):8105-11. PubMed ID: 23049091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and biological characterization of sulfated-derivatized oat beta-glucan.
    Chang YJ; Lee S; Yoo MA; Lee HG
    J Agric Food Chem; 2006 May; 54(11):3815-8. PubMed ID: 16719501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis.
    Chaubey P; Patel RR; Mishra B
    Expert Opin Drug Deliv; 2014 Aug; 11(8):1163-81. PubMed ID: 24875148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin.
    Dey S; Sreenivasan K
    Carbohydr Polym; 2014 Jan; 99():499-507. PubMed ID: 24274536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into Micellization of Octenylsuccinated Oat β-Glucan and Uptake and Controlled Release of β-Carotene by the Resultant Micelles.
    Wu Z; Zhao C; Li R; Ye F; Zhou Y; Zhao G
    J Agric Food Chem; 2019 Jul; 67(26):7416-7427. PubMed ID: 31180666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of molecular size and shape of hyperbranched polysaccharide in solution.
    Tao Y; Zhang L
    Biopolymers; 2006 Nov; 83(4):414-23. PubMed ID: 16845668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. α-Tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: preparation, characterization and in vitro/in vivo evaluations.
    Liang N; Sun S; Li X; Piao H; Piao H; Cui F; Fang L
    Int J Pharm; 2012 Feb; 423(2):480-8. PubMed ID: 22183133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of β-D-glucan nanoparticles and its antifungal activity.
    Anusuya S; Sathiyabama M
    Int J Biol Macromol; 2014 Sep; 70():440-3. PubMed ID: 25036603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells.
    Sahu A; Bora U; Kasoju N; Goswami P
    Acta Biomater; 2008 Nov; 4(6):1752-61. PubMed ID: 18524701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregates of octenylsuccinate oat β-glucan as novel capsules to stabilize curcumin over food processing, storage and digestive fluids and to enhance its bioavailability.
    Liu J; Lei L; Ye F; Zhou Y; Younis HGR; Zhao G
    Food Funct; 2018 Jan; 9(1):491-501. PubMed ID: 29243747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curcumin Cocrystal Micelles-Multifunctional Nanocomposites for Management of Neurodegenerative Ailments.
    Desai PP; Patravale VB
    J Pharm Sci; 2018 Apr; 107(4):1143-1156. PubMed ID: 29183742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological and microstructural investigation of oat β-glucan isolates varying in molecular weight.
    Agbenorhevi JK; Kontogiorgos V; Kirby AR; Morris VJ; Tosh SM
    Int J Biol Macromol; 2011 Oct; 49(3):369-77. PubMed ID: 21640753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of Paliperidone loaded solid lipid nanoparticles.
    Kumar S; Randhawa JK
    Colloids Surf B Biointerfaces; 2013 Feb; 102():562-8. PubMed ID: 23104026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.