These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25005961)

  • 21. Preparation and characterization of water/oil/water emulsions stabilized by polyglycerol polyricinoleate and whey protein isolate.
    Mun S; Choi Y; Rho SJ; Kang CG; Park CH; Kim YR
    J Food Sci; 2010 Mar; 75(2):E116-25. PubMed ID: 20492231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term stability of crystal-stabilized water-in-oil emulsions.
    Ghosh S; Pradhan M; Patel T; Haj-Shafiei S; Rousseau D
    J Colloid Interface Sci; 2015 Dec; 460():247-57. PubMed ID: 26343977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersion and oxidative stability of O/W emulsions and oxidation of microencapsulated oil.
    Miyagawa Y; Adachi S
    Biosci Biotechnol Biochem; 2017 Apr; 81(4):625-633. PubMed ID: 28165891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions.
    Yesiltas B; Sørensen AM; García-Moreno PJ; Anankanbil S; Guo Z; Jacobsen C
    Food Chem; 2018 Jul; 255():290-299. PubMed ID: 29571479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features.
    Gomes A; Costa ALR; Cunha RL
    Colloids Surf B Biointerfaces; 2018 Apr; 164():272-280. PubMed ID: 29413606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80.
    Jiao J; Burgess DJ
    AAPS PharmSci; 2003; 5(1):E7. PubMed ID: 12713279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of continuous phase protein on the oxidative stability of fish oil-in-water emulsions.
    Faraji H; McClements DJ; Decker EA
    J Agric Food Chem; 2004 Jul; 52(14):4558-64. PubMed ID: 15237967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of interfacial microstructure on the lipid oxidation stability of oil-in-water emulsions.
    Kargar M; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2011 May; 357(2):527-33. PubMed ID: 21388633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physical and oxidative stability of fish oil-in-water emulsions stabilized with beta-lactoglobulin and pectin.
    Katsuda MS; McClements DJ; Miglioranza LH; Decker EA
    J Agric Food Chem; 2008 Jul; 56(14):5926-31. PubMed ID: 18582080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical and Oxidative Stability of Flaxseed Oil-in-Water Emulsions Fabricated from Sunflower Lecithins: Impact of Blending Lecithins with Different Phospholipid Profiles.
    Liang L; Chen F; Wang X; Jin Q; Decker EA; McClements DJ
    J Agric Food Chem; 2017 Jun; 65(23):4755-4765. PubMed ID: 28534401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes.
    Surh J; Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stabilization of a non-aqueous self-double-emulsifying delivery system of rutin by fat crystals and nonionic surfactants: preparation and bioavailability study.
    Wang Q; Huang J; Hu C; Xia N; Li T; Xia Q
    Food Funct; 2017 Jul; 8(7):2512-2522. PubMed ID: 28640295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of pH and iota-carrageenan concentration on physicochemical properties and stability of beta-lactoglobulin-stabilized oil-in-water emulsions.
    Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2004 Jun; 52(11):3626-32. PubMed ID: 15161241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complexation of resveratrol with soy protein and its improvement on oxidative stability of corn oil/water emulsions.
    Wan ZL; Wang JM; Wang LY; Yuan Y; Yang XQ
    Food Chem; 2014 Oct; 161():324-31. PubMed ID: 24837958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers.
    Zhu Z; Zhao C; Yi J; Liu N; Cao Y; Decker EA; McClements DJ
    J Agric Food Chem; 2018 May; 66(17):4458-4468. PubMed ID: 29648824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of thermal behavior of β-lactoglobulin on the oxidative stability of menhaden oil-in-water emulsions.
    Phoon PY; Narsimhan G; San Martin-Gonzalez MF
    J Agric Food Chem; 2013 Feb; 61(8):1954-67. PubMed ID: 23356684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of formulation on the oxidative stability of water-in-oil emulsions.
    Dridi W; Essafi W; Gargouri M; Leal-Calderon F; Cansell M
    Food Chem; 2016 Jul; 202():205-11. PubMed ID: 26920286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of the interfacial layer to the protection of emulsified lipids against oxidation.
    Berton C; Ropers MH; Viau M; Genot C
    J Agric Food Chem; 2011 May; 59(9):5052-61. PubMed ID: 21480612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homogenization conditions affect the oxidative stability of fish oil enriched milk emulsions: oxidation linked to changes in protein composition at the oil-water interface.
    Sørensen AD; Baron CP; Let MB; Brüggemann DA; Pedersen LR; Jacobsen C
    J Agric Food Chem; 2007 Mar; 55(5):1781-9. PubMed ID: 17288436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.