These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25006178)

  • 1. Tree stability under wind: simulating uprooting with root breakage using a finite element method.
    Yang M; Défossez P; Danjon F; Fourcaud T
    Ann Bot; 2014 Sep; 114(4):695-709. PubMed ID: 25006178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root architecture and wind-firmness of mature Pinus pinaster.
    Danjon F; Fourcaud T; Bert D
    New Phytol; 2005 Nov; 168(2):387-400. PubMed ID: 16219078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element model for investigating effects of aerial architecture on tree oscillations.
    Sellier D; Fourcaud T; Lac P
    Tree Physiol; 2006 Jun; 26(6):799-806. PubMed ID: 16510396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the impact of root morphology on overturning mechanisms: a modelling approach.
    Fourcaud T; Ji JN; Zhang ZQ; Stokes A
    Ann Bot; 2008 May; 101(8):1267-80. PubMed ID: 17942593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anchorage of mature conifers: resistive turning moment, root-soil plate geometry and root growth orientation.
    Lundström T; Jonas T; Stöckli V; Ammann W
    Tree Physiol; 2007 Sep; 27(9):1217-27. PubMed ID: 17545122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A density-based approach for the modelling of root architecture: application to Maritime pine (Pinus pinaster Ait.) root systems.
    Dupuy L; Fourcaud T; Stokes A; Danjon F
    J Theor Biol; 2005 Oct; 236(3):323-34. PubMed ID: 15961115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture.
    Dupuy LX; Fourcaud T; Lac P; Stokes A
    Am J Bot; 2007 Sep; 94(9):1506-14. PubMed ID: 21636517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Control of Root Growth: A Computer Simulation.
    Mattheck C; Teschner M; Schäfer J
    J Theor Biol; 1997 Feb; 184(3):261-269. PubMed ID: 31940737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root distribution of Pinus pinaster, P. radiata, Eucalyptus globulus and E. kochii and associated soil chemistry in agricultural land adjacent to tree lines.
    Sudmeyer RA; Speijers J; Nicholas BD
    Tree Physiol; 2004 Dec; 24(12):1333-46. PubMed ID: 15465696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anchorage failure of young trees in sandy soils is prevented by a rigid central part of the root system with various designs.
    Danquechin Dorval A; Meredieu C; Danjon F
    Ann Bot; 2016 Oct; 118(4):747-762. PubMed ID: 27456136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of root system architecture and root hairs in promoting anchorage against uprooting forces in Allium cepa and root mutants of Arabidopsis thaliana.
    Bailey PH; Currey JD; Fitter AH
    J Exp Bot; 2002 Feb; 53(367):333-40. PubMed ID: 11807137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates.
    Jacquet JS; Bosc A; O'Grady A; Jactel H
    Tree Physiol; 2014 Apr; 34(4):367-76. PubMed ID: 24736390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanics of plant anchorage at early development stage.
    Crouzy B; Edmaier K; Perona P
    J Theor Biol; 2014 Dec; 363():22-9. PubMed ID: 25109590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model.
    Perämäki M; Nikinmaa E; Sevanto S; Ilvesniemi H; Siivola E; Hari P; Vesala T
    Tree Physiol; 2001 Aug; 21(12-13):889-97. PubMed ID: 11498336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydraulic architecture and tracheid allometry in mature Pinus palustris and Pinus elliottii trees.
    Gonzalez-Benecke CA; Martin TA; Peter GF
    Tree Physiol; 2010 Mar; 30(3):361-75. PubMed ID: 20103778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Righting response of artificially inclined maritime pine (Pinus pinaster) saplings to wind loading.
    Berthier S; Stokes A
    Tree Physiol; 2006 Jan; 26(1):73-9. PubMed ID: 16203716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functional-structural model for radiata pine (Pinus radiata) focusing on tree architecture and wood quality.
    Fernández MP; Norero A; Vera JR; Pérez E
    Ann Bot; 2011 Oct; 108(6):1155-78. PubMed ID: 21987452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevational trends in hydraulic efficiency and safety of Pinus cembra roots.
    Losso A; Nardini A; Nolf M; Mayr S
    Oecologia; 2016 Apr; 180(4):1091-102. PubMed ID: 26678990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling and predicting the spatial distribution of tree root density in heterogeneous forest ecosystems.
    Mao Z; Saint-André L; Bourrier F; Stokes A; Cordonnier T
    Ann Bot; 2015 Aug; 116(2):261-77. PubMed ID: 26173892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root biomechanics in Rhizophora mangle: anatomy, morphology and ecology of mangrove's flying buttresses.
    Méndez-Alonzo R; Moctezuma C; Ordoñez VR; Angeles G; Martínez AJ; López-Portillo J
    Ann Bot; 2015 Apr; 115(5):833-40. PubMed ID: 25681823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.