BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 25006701)

  • 1. Evolution of Li2O2 growth and its effect on kinetics of Li-O2 batteries.
    Xia C; Waletzko M; Chen L; Peppler K; Klar PJ; Janek J
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12083-92. PubMed ID: 25006701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth.
    Mitchell RR; Gallant BM; Shao-Horn Y; Thompson CV
    J Phys Chem Lett; 2013 Apr; 4(7):1060-4. PubMed ID: 26282021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries.
    Kwabi DG; Batcho TP; Amanchukwu CV; Ortiz-Vitoriano N; Hammond P; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2014 Aug; 5(16):2850-6. PubMed ID: 26278088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disproportionation in Li-O2 batteries based on a large surface area carbon cathode.
    Zhai D; Wang HH; Yang J; Lau KC; Li K; Amine K; Curtiss LA
    J Am Chem Soc; 2013 Oct; 135(41):15364-72. PubMed ID: 24053681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li
    Feng N; Mu X; Zhang X; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ small-angle X-ray scattering reveals solution phase discharge of Li-O
    Prehal C; Samojlov A; Nachtnebel M; Lovicar L; Kriechbaum M; Amenitsch H; Freunberger SA
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33785597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate-Dependent Morphology of Li2O2 Growth in Li-O2 Batteries.
    Horstmann B; Gallant B; Mitchell R; Bessler WG; Shao-Horn Y; Bazant MZ
    J Phys Chem Lett; 2013 Dec; 4(24):4217-22. PubMed ID: 26296168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium Doping Facilitated Formation of Tunable Superoxides in Li
    Dai W; Cui X; Chi X; Zhou Y; Yang J; Lian X; Zhang Q; Dong W; Chen W
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4558-4564. PubMed ID: 31960670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries.
    McCloskey BD; Garcia JM; Luntz AC
    J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries.
    Lu YC; Shao-Horn Y
    J Phys Chem Lett; 2013 Jan; 4(1):93-9. PubMed ID: 26291218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in understanding of the mechanism and control of Li
    Lyu Z; Zhou Y; Dai W; Cui X; Lai M; Wang L; Huo F; Huang W; Hu Z; Chen W
    Chem Soc Rev; 2017 Oct; 46(19):6046-6072. PubMed ID: 28857099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries.
    Kwabi DG; Tułodziecki M; Pour N; Itkis DM; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2016 Apr; 7(7):1204-12. PubMed ID: 26949979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clear Representation of Surface Pathway Reactions at Ag Nanowire Cathodes in All-Solid Li-O
    Wang H; Zhao N; Bi Z; Gao S; Dai Q; Yang T; Wang J; Jia Z; Peng Z; Huang J; Wan Y; Guo X
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39157-39164. PubMed ID: 34378380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries.
    McCloskey BD; Valery A; Luntz AC; Gowda SR; Wallraff GM; Garcia JM; Mori T; Krupp LE
    J Phys Chem Lett; 2013 Sep; 4(17):2989-93. PubMed ID: 26706312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A PtRu catalyzed rechargeable oxygen electrode for Li-O2 batteries: performance improvement through Li2O2 morphology control.
    Yang Y; Liu W; Wang Y; Wang X; Xiao L; Lu J; Zhuang L
    Phys Chem Chem Phys; 2014 Oct; 16(38):20618-23. PubMed ID: 25158000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of transition metal oxides on the kinetics of Li2O2 oxidation in Li-O2 batteries: high activity of chromium oxides.
    Yao KP; Lu YC; Amanchukwu CV; Kwabi DG; Risch M; Zhou J; Grimaud A; Hammond PT; Bardé F; Shao-Horn Y
    Phys Chem Chem Phys; 2014 Feb; 16(6):2297-304. PubMed ID: 24352578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the Facile Routes for Oxygen Evolution Reaction by In Situ Probing of Li-O
    Hong M; Yang C; Wong RA; Nakao A; Choi HC; Byon HR
    J Am Chem Soc; 2018 May; 140(20):6190-6193. PubMed ID: 29739188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive role of surface defects on carbon nanotube cathodes in overpotential and capacity retention of rechargeable lithium-oxygen batteries.
    Huang S; Fan W; Guo X; Meng F; Liu X
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21567-75. PubMed ID: 25397991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoupling the Cumulative Contributions of Capacity Fade in Ethereal-Based Li-O
    Karkera G; Prakash AS
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27870-27881. PubMed ID: 31298520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.