These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 25006701)

  • 41. Compactness of the Lithium Peroxide Thin Film Formed in Li-O
    Yin Y; Zhao R; Deng Y; Franco AA
    J Phys Chem Lett; 2017 Feb; 8(3):599-604. PubMed ID: 28076952
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of Space-Charge Layers on Sudden Death in Li/O2 Batteries.
    Radin MD; Monroe CW; Siegel DJ
    J Phys Chem Lett; 2015 Aug; 6(15):3017-22. PubMed ID: 26267197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rotating-disk electrode analysis of the oxidation behavior of dissolved Li
    Ren J; Huang Z; Kalambate PK; Shen Y; Huang Y
    RSC Adv; 2018 Aug; 8(50):28496-28502. PubMed ID: 35542485
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crown Ether Electrolyte Induced Li
    Li M; Wu J; You Z; Dai Z; Gu Y; Shi L; Wu M; Wen Z
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202403521. PubMed ID: 38654696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative Delineation of the Low Energy Decomposition Pathway for Lithium Peroxide in Lithium-Oxygen Battery.
    Dutta A; Ito K; Nomura A; Kubo Y
    Adv Sci (Weinh); 2020 Oct; 7(19):2001660. PubMed ID: 33042767
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An atomistically informed mesoscale model for growth and coarsening during discharge in lithium-oxygen batteries.
    Welland MJ; Lau KC; Redfern PC; Liang L; Zhai D; Wolf D; Curtiss LA
    J Chem Phys; 2015 Dec; 143(22):224113. PubMed ID: 26671364
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular Sieve Induced Solution Growth of Li
    Yu W; Wang H; Hu J; Yang W; Qin L; Liu R; Li B; Zhai D; Kang F
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7989-7995. PubMed ID: 29461029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amorphous Li2 O2 : Chemical Synthesis and Electrochemical Properties.
    Zhang Y; Cui Q; Zhang X; McKee WC; Xu Y; Ling S; Li H; Zhong G; Yang Y; Peng Z
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10717-21. PubMed ID: 27486085
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Correlating Li/O2 cell capacity and product morphology with discharge current.
    Griffith LD; Sleightholme AE; Mansfield JF; Siegel DJ; Monroe CW
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7670-8. PubMed ID: 25775079
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controlled Growth of Li
    Cao C; Yan Y; Zhang H; Xie J; Zhang S; Pan B; Cao G; Zhao X
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31653-31660. PubMed ID: 27802013
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic Changes in Charge Transfer Resistances during Cycling of Aprotic Li-O
    Morimoto K; Kusumoto T; Nishioka K; Kamiya K; Mukouyama Y; Nakanishi S
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42803-42810. PubMed ID: 32808758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. True Reaction Sites on Discharge in Li-O
    Tan C; Cao D; Zheng L; Shen Y; Chen L; Chen Y
    J Am Chem Soc; 2022 Jan; 144(2):807-815. PubMed ID: 34991315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Real-Time XRD Studies of Li-O2 Electrochemical Reaction in Nonaqueous Lithium-Oxygen Battery.
    Lim H; Yilmaz E; Byon HR
    J Phys Chem Lett; 2012 Nov; 3(21):3210-5. PubMed ID: 26296031
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Implications of CO2 Contamination in Rechargeable Nonaqueous Li-O2 Batteries.
    Gowda SR; Brunet A; Wallraff GM; McCloskey BD
    J Phys Chem Lett; 2013 Jan; 4(2):276-9. PubMed ID: 26283434
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formation of Li3O4 nano particles in the discharge products of non-aqueous lithium-oxygen batteries leads to lower charge overvoltage.
    Shi L; Xu A; Zhao TS
    Phys Chem Chem Phys; 2015 Nov; 17(44):29859-66. PubMed ID: 26486991
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li-Air Batteries.
    Kavalsky L; Mukherjee S; Singh CV
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):499-510. PubMed ID: 30521304
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing the Reaction Interface in Li-Oxygen Batteries Using Dynamic Electrochemical Impedance Spectroscopy: Discharge-Charge Asymmetry in Reaction Sites and Electronic Conductivity.
    Huang J; Tong B; Li Z; Zhou T; Zhang J; Peng Z
    J Phys Chem Lett; 2018 Jun; 9(12):3403-3408. PubMed ID: 29864272
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Poly(vinylidene fluoride) (PVDF) Binder Degradation in Li-O
    Papp JK; Forster JD; Burke CM; Kim HW; Luntz AC; Shelby RM; Urban JJ; McCloskey BD
    J Phys Chem Lett; 2017 Mar; 8(6):1169-1174. PubMed ID: 28240555
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial Distributions of Discharged Products of Lithium-Oxygen Batteries Revealed by Synchrotron X-ray Transmission Microscopy.
    Olivares-MarĂ­n M; Sorrentino A; Lee RC; Pereiro E; Wu NL; Tonti D
    Nano Lett; 2015 Oct; 15(10):6932-8. PubMed ID: 26339872
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Operando Observation of the De-Evolution/Evolution Process of Hydrated LiOH in Moisture-Assisted Li-O
    Kim H; Lee H; Choi W; Yoon G; Jung C; Kim M; Kim T; Park J; Im D
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29120-29126. PubMed ID: 37294066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.