These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25006995)

  • 1. Multichannel system based on a high sensitivity superconductive sensor for magnetoencephalography.
    Rombetto S; Granata C; Vettoliere A; Russo M
    Sensors (Basel); 2014 Jul; 14(7):12114-26. PubMed ID: 25006995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensation System for Biomagnetic Measurements with Optically Pumped Magnetometers inside a Magnetically Shielded Room.
    Jodko-Władzińska A; Wildner K; Pałko T; Władziński M
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A compact, high performance atomic magnetometer for biomedical applications.
    Shah VK; Wakai RT
    Phys Med Biol; 2013 Nov; 58(22):8153-61. PubMed ID: 24200837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 20-channel magnetoencephalography system based on optically pumped magnetometers.
    Borna A; Carter TR; Goldberg JD; Colombo AP; Jau YY; Berry C; McKay J; Stephen J; Weisend M; Schwindt PDD
    Phys Med Biol; 2017 Nov; 62(23):8909-8923. PubMed ID: 29035875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer.
    Vesanen PT; Nieminen JO; Zevenhoven KC; Dabek J; Parkkonen LT; Zhdanov AV; Luomahaara J; Hassel J; Penttilä J; Simola J; Ahonen AI; Mäkelä JP; Ilmoniemi RJ
    Magn Reson Med; 2013 Jun; 69(6):1795-804. PubMed ID: 22807201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High temperature RF SQUIDs for biomedical applications.
    Zhang Y; Tavrin Y; Mück M; Braginski AI; Heiden C; Elbert T; Hampson S
    Physiol Meas; 1993 May; 14(2):113-9. PubMed ID: 8334406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomical MRI with an atomic magnetometer.
    Savukov I; Karaulanov T
    J Magn Reson; 2013 Jun; 231():39-45. PubMed ID: 23567881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision magnetic field modelling and control for wearable magnetoencephalography.
    Rea M; Holmes N; Hill RM; Boto E; Leggett J; Edwards LJ; Woolger D; Dawson E; Shah V; Osborne J; Bowtell R; Brookes MJ
    Neuroimage; 2021 Nov; 241():118401. PubMed ID: 34273527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography.
    He K; Wan S; Sheng J; Liu D; Wang C; Li D; Qin L; Luo S; Qin J; Gao JH
    Rev Sci Instrum; 2019 Jun; 90(6):064102. PubMed ID: 31254989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research.
    Okada Y; Hämäläinen M; Pratt K; Mascarenas A; Miller P; Han M; Robles J; Cavallini A; Power B; Sieng K; Sun L; Lew S; Doshi C; Ahtam B; Dinh C; Esch L; Grant E; Nummenmaa A; Paulson D
    Rev Sci Instrum; 2016 Sep; 87(9):094301. PubMed ID: 27782541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of superconducting contacts for the CRESST II 66-channel superconducting quantum interference device readout system.
    Majorovits B; Henry S; Kraus H
    Rev Sci Instrum; 2007 Jul; 78(7):073301. PubMed ID: 17672757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Information content with low- vs. high-T(c) SQUID arrays in MEG recordings: the case for high-T(c) SQUID-based MEG.
    Schneiderman JF
    J Neurosci Methods; 2014 Jan; 222():42-6. PubMed ID: 24184856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High sensitivity optically pumped quantum magnetometer.
    Tiporlini V; Alameh K
    ScientificWorldJournal; 2013; 2013():858379. PubMed ID: 23766716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the development of BSCCO superconducting device with a lever-type magnetic force measurement unit.
    Lee SH; Choi Y
    J Nanosci Nanotechnol; 2013 May; 13(5):3641-4. PubMed ID: 23858919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance model.
    Jingyi Z
    Bioengineered; 2015; 6(5):283-7. PubMed ID: 26198910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [High resolution EEG and whole head MEG].
    Scheer HJ; Burghoff M
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():564-5. PubMed ID: 12465238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise amplification in parallel whole-head ultra-low-field magnetic resonance imaging using 306 detectors.
    Lin FH; Vesanen PT; Nieminen JO; Hsu YC; Zevenhoven KC; Dabek J; Parkkonen LT; Zhdanov A; Ilmoniemi RJ
    Magn Reson Med; 2013 Aug; 70(2):595-600. PubMed ID: 23023497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise-free magnetoencephalography recordings of brain function.
    Volegov P; Matlachov A; Mosher J; Espy MA; Kraus RH
    Phys Med Biol; 2004 May; 49(10):2117-28. PubMed ID: 15214546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-head SQUID system in a superconducting magnetic shield.
    Ohta H; Matsui T; Uchikawa Y
    Neurol Clin Neurophysiol; 2004 Nov; 2004():58. PubMed ID: 16012595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-Axis projection error in optically pumped magnetometers and its implication for magnetoencephalography systems.
    Borna A; Iivanainen J; Carter TR; McKay J; Taulu S; Stephen J; Schwindt PDD
    Neuroimage; 2022 Feb; 247():118818. PubMed ID: 34915157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.