These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 25007400)
1. Hierarchical hematite nanoplatelets for photoelectrochemical water splitting. Marelli M; Naldoni A; Minguzzi A; Allieta M; Virgili T; Scavia G; Recchia S; Psaro R; Dal Santo V ACS Appl Mater Interfaces; 2014 Aug; 6(15):11997-2004. PubMed ID: 25007400 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of CuFe Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650 [TBL] [Abstract][Full Text] [Related]
3. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting. Ji M; Cai J; Ma Y; Qi L ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010 [TBL] [Abstract][Full Text] [Related]
4. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance. Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649 [TBL] [Abstract][Full Text] [Related]
5. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device. Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535 [TBL] [Abstract][Full Text] [Related]
6. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting. Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784 [TBL] [Abstract][Full Text] [Related]
7. Nanotextured Spikes of α-Fe Hussain S; Tavakoli MM; Waleed A; Virk US; Yang S; Waseem A; Fan Z; Nadeem MA Langmuir; 2018 Mar; 34(12):3555-3564. PubMed ID: 29537275 [TBL] [Abstract][Full Text] [Related]
8. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922 [TBL] [Abstract][Full Text] [Related]
9. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting. Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489 [TBL] [Abstract][Full Text] [Related]
10. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution. Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113 [TBL] [Abstract][Full Text] [Related]
11. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation. Diab M; Mokari T Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819 [TBL] [Abstract][Full Text] [Related]
12. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation. Kment S; Schmuki P; Hubicka Z; Machala L; Kirchgeorg R; Liu N; Wang L; Lee K; Olejnicek J; Cada M; Gregora I; Zboril R ACS Nano; 2015 Jul; 9(7):7113-23. PubMed ID: 26083741 [TBL] [Abstract][Full Text] [Related]
13. Chemical Vapor Deposition of FeOCl Nanosheet Arrays and Their Conversion to Porous α-Fe2 O3 Photoanodes for Photoelectrochemical Water Splitting. Wang CW; Yang S; Jiang HB; Yang H Chemistry; 2015 Dec; 21(50):18024-8. PubMed ID: 26507080 [TBL] [Abstract][Full Text] [Related]
14. Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting. Nyarige JS; Paradzah AT; Krüger TPJ; Diale M Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159711 [TBL] [Abstract][Full Text] [Related]
15. TiO2 and Fe2O3 films for photoelectrochemical water splitting. Krysa J; Zlamal M; Kment S; Brunclikova M; Hubicka Z Molecules; 2015 Jan; 20(1):1046-58. PubMed ID: 25584834 [TBL] [Abstract][Full Text] [Related]
16. Hematite-based photoelectrochemical water splitting supported by inverse opal structures of graphene. Yoon KY; Lee JS; Kim K; Bak CH; Kim SI; Kim JB; Jang JH ACS Appl Mater Interfaces; 2014 Dec; 6(24):22634-9. PubMed ID: 25469502 [TBL] [Abstract][Full Text] [Related]
17. Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting. Fu L; Yu H; Li Y; Zhang C; Wang X; Shao Z; Yi B Phys Chem Chem Phys; 2014 Mar; 16(9):4284-90. PubMed ID: 24451918 [TBL] [Abstract][Full Text] [Related]
18. Hydrothermal Synthesis in Gap: Conformal Deposition of Textured Hematite Thin Films for Efficient Photoelectrochemical Water Splitting. Kong H; Park JS; Kim JH; Hwang S; Yeo J ACS Appl Mater Interfaces; 2022 Apr; 14(14):16515-16526. PubMed ID: 35362321 [TBL] [Abstract][Full Text] [Related]
19. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System. Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672 [TBL] [Abstract][Full Text] [Related]
20. Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. Shen S; Guo P; Wheeler DA; Jiang J; Lindley SA; Kronawitter CX; Zhang JZ; Guo L; Mao SS Nanoscale; 2013 Oct; 5(20):9867-74. PubMed ID: 23974247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]