These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25007721)

  • 1. Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device.
    Hou Z; An Y; Hjort K; Hjort K; Sandegren L; Wu Z
    Lab Chip; 2014 Sep; 14(17):3409-18. PubMed ID: 25007721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system.
    Choi J; Jung YG; Kim J; Kim S; Jung Y; Na H; Kwon S
    Lab Chip; 2013 Jan; 13(2):280-7. PubMed ID: 23172338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic microbial culture device for rapid determination of the minimum inhibitory concentration of antibiotics.
    Takagi R; Fukuda J; Nagata K; Yawata Y; Nomura N; Suzuki H
    Analyst; 2013 Feb; 138(4):1000-3. PubMed ID: 23289096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Antibiotic Susceptibility Test via a 3D Microfluidic Culture Device.
    Hou Z; An Y; Wu Z
    Methods Mol Biol; 2017; 1572():365-377. PubMed ID: 28299700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Microfluidic Assay for Rapid Phenotypic Antibiotic Susceptibility Testing of Bacteria Detected in Clinical Blood Cultures.
    Malmberg C; Yuen P; Spaak J; Cars O; Tängdén T; Lagerbäck P
    PLoS One; 2016; 11(12):e0167356. PubMed ID: 27974860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics.
    Cira NJ; Ho JY; Dueck ME; Weibel DB
    Lab Chip; 2012 Mar; 12(6):1052-9. PubMed ID: 22193301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid antibiotic susceptibility testing in a microfluidic pH sensor.
    Tang Y; Zhen L; Liu J; Wu J
    Anal Chem; 2013 Mar; 85(5):2787-94. PubMed ID: 23360389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamine effects on antibiotic susceptibility in bacteria.
    Kwon DH; Lu CD
    Antimicrob Agents Chemother; 2007 Jun; 51(6):2070-7. PubMed ID: 17438056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic platform for rapid, stress-induced antibiotic susceptibility testing of Staphylococcus aureus.
    Kalashnikov M; Lee JC; Campbell J; Sharon A; Sauer-Budge AF
    Lab Chip; 2012 Nov; 12(21):4523-32. PubMed ID: 22968495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ethyleneimines) in dermal applications: biocompatibility and antimicrobial effects.
    Wiegand C; Bauer M; Hipler UC; Fischer D
    Int J Pharm; 2013 Nov; 456(1):165-74. PubMed ID: 23948135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the mutant selection window hypothesis with Staphylococcus aureus exposed to daptomycin and vancomycin in an in vitro dynamic model.
    Firsov AA; Smirnova MV; Lubenko IY; Vostrov SN; Portnoy YA; Zinner SH
    J Antimicrob Chemother; 2006 Dec; 58(6):1185-92. PubMed ID: 17028094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid screening of antibiotic toxicity in an automated microdroplet system.
    Churski K; Kaminski TS; Jakiela S; Kamysz W; Baranska-Rybak W; Weibel DB; Garstecki P
    Lab Chip; 2012 May; 12(9):1629-37. PubMed ID: 22422170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel concentration gradient microfluidic chip for high-throughput antibiotic susceptibility testing of bacteria.
    Sun J; Ren Y; Ji J; Guo Y; Sun X
    Anal Bioanal Chem; 2021 Feb; 413(4):1127-1136. PubMed ID: 33420534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration-response studies and modelling of the pharmacodynamics of linezolid: Staphylococcus aureus versus Enterococcus faecium.
    Scheerans C; Wicha SG; Michael J; Derendorf H; Kloft C
    Int J Antimicrob Agents; 2015 Jan; 45(1):54-60. PubMed ID: 25455852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of antibiotic EC50 using a zero-flow microfluidic chip based growth phenotype assay.
    Dai J; Suh SJ; Hamon M; Hong JW
    Biotechnol J; 2015 Sep; 10(11):1783-91. PubMed ID: 26110969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate assessment of antibiotic susceptibility and screening resistant strains of a bacterial population by linear gradient plate.
    Liu Y; Li J; Du J; Hu M; Bai H; Qi J; Gao C; Wei T; Su H; Jin J; Gao P
    Sci China Life Sci; 2011 Oct; 54(10):953-60. PubMed ID: 22038008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method.
    Zardini HZ; Amiri A; Shanbedi M; Maghrebi M; Baniadam M
    Colloids Surf B Biointerfaces; 2012 Apr; 92():196-202. PubMed ID: 22197225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach for assessing the susceptibility of Escherichia coli to antibiotics.
    Zhang H; Zhao Y; He X; Gao P
    Sci China Life Sci; 2010 Nov; 53(11):1346-55. PubMed ID: 21046327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure-response analysis of tigecycline in pharmacodynamic simulations using different size inocula of target bacteria.
    Sevillano D; Aguilar L; Alou L; Giménez MJ; González N; Torrico M; Cafini F; Garcia-Rey C; Garcia-Escribano N; Prieto J
    Int J Antimicrob Agents; 2010 Aug; 36(2):137-44. PubMed ID: 20462741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single cell growth rate and morphological dynamics revealing an "opportunistic" persistence.
    Li B; Qiu Y; Glidle A; Cooper J; Shi H; Yin H
    Analyst; 2014 Jul; 139(13):3305-13. PubMed ID: 24733150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.