These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25007840)

  • 1. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations.
    Chen A; Pan T
    Lab Chip; 2014 Sep; 14(17):3401-8. PubMed ID: 25007840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems.
    Rhee M; Burns MA
    Lab Chip; 2009 Nov; 9(21):3131-43. PubMed ID: 19823730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pneumatic oscillator circuits for timing and control of integrated microfluidics.
    Duncan PN; Nguyen TV; Hui EE
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18104-9. PubMed ID: 24145429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated and parallel microfluidic DNA extraction with integrated pneumatic microvalves/pumps and reusable open-channel columns.
    Zhong R; Wang M; Lin B
    Electrophoresis; 2023 May; 44(9-10):825-834. PubMed ID: 36694428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacuum pressure generation via microfabricated converging-diverging nozzles for operation of automated pneumatic logic.
    Christoforidis T; Werner EM; Hui EE; Eddington DT
    Biomed Microdevices; 2016 Aug; 18(4):74. PubMed ID: 27469475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable virtual electrowetting channels.
    Banerjee A; Kreit E; Liu Y; Heikenfeld J; Papautsky I
    Lab Chip; 2012 Feb; 12(4):758-64. PubMed ID: 22159496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications.
    Sinha Mahapatra P; Ganguly R; Ghosh A; Chatterjee S; Lowrey S; Sommers AD; Megaridis CM
    Chem Rev; 2022 Nov; 122(22):16752-16801. PubMed ID: 36195098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips.
    Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD
    Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of Dynamic Concentration Profile Using A Microfluidic Device Integrating Pneumatic Microvalves.
    Chen C; Li P; Guo T; Chen S; Xu D; Chen H
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pneumatic computers for embedded control of microfluidics.
    Ahrar S; Raje M; Lee IC; Hui EE
    Sci Adv; 2023 Jun; 9(22):eadg0201. PubMed ID: 37267360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Portable and integrated microfluidic flow control system using off-the-shelf components towards organs-on-chip applications.
    Zhu H; Özkayar G; Lötters J; Tichem M; Ghatkesar MK
    Biomed Microdevices; 2023 Jun; 25(2):19. PubMed ID: 37266714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvalves for Applications in Centrifugal Microfluidics.
    Peshin S; Madou M; Kulinsky L
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Simulation on the Response Characteristics of a Pneumatic Microactuator for Microfluidic Chips.
    Liu X; Li S; Bao G
    J Lab Autom; 2016 Jun; 21(3):412-22. PubMed ID: 25944840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip.
    Yeh EC; Fu CC; Hu L; Thakur R; Feng J; Lee LP
    Sci Adv; 2017 Mar; 3(3):e1501645. PubMed ID: 28345028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.