BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25007982)

  • 41. Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults.
    Parvataneni K; Ploeg L; Olney SJ; Brouwer B
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):95-100. PubMed ID: 18976839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Indirect calorimetry during treadmill walking--a study of two methods.
    Ohrström M; Holmer C; Larsson M; Lindoff B; Ekelund M
    Clin Physiol; 1997 May; 17(3):237-45. PubMed ID: 9171964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reliability of energy cost calculations in children with cerebral palsy, cystic fibrosis and healthy controls.
    Bratteby Tollerz LU; Olsson RM; Forslund AH; Norrlin SE
    Acta Paediatr; 2011 Dec; 100(12):1616-20. PubMed ID: 21726284
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking.
    Stoquart G; Detrembleur C; Lejeune T
    Neurophysiol Clin; 2008 Apr; 38(2):105-16. PubMed ID: 18423331
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessment of energy expenditure in children using the RT3 accelerometer.
    Kavouras SA; Sarras SE; Tsekouras YE; Sidossis LS
    J Sports Sci; 2008 Jul; 26(9):959-66. PubMed ID: 18569562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ageing and limb dominance effects on foot-ground clearance during treadmill and overground walking.
    Nagano H; Begg RK; Sparrow WA; Taylor S
    Clin Biomech (Bristol, Avon); 2011 Nov; 26(9):962-8. PubMed ID: 21719169
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of energetic cost in the age-related slowing of gait speed.
    Schrack JA; Simonsick EM; Chaves PH; Ferrucci L
    J Am Geriatr Soc; 2012 Oct; 60(10):1811-6. PubMed ID: 23035640
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variability in energy cost and walking gait during race walking in competitive race walkers.
    Brisswalter J; Fougeron B; Legros P
    Med Sci Sports Exerc; 1998 Sep; 30(9):1451-5. PubMed ID: 9741616
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reliability and minimal detectable change of gait variables in community-dwelling and hospitalized older fallers.
    Hars M; Herrmann FR; Trombetti A
    Gait Posture; 2013 Sep; 38(4):1010-4. PubMed ID: 23790571
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Test-retest reliability of spatial and temporal gait parameters in children with cerebral palsy as measured by an electronic walkway.
    Sorsdahl AB; Moe-Nilssen R; Strand LI
    Gait Posture; 2008 Jan; 27(1):43-50. PubMed ID: 17300940
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects.
    Watt JR; Franz JR; Jackson K; Dicharry J; Riley PO; Kerrigan DC
    Clin Biomech (Bristol, Avon); 2010 Jun; 25(5):444-9. PubMed ID: 20347194
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Validity of a Wireless Gait Analysis Tool (Wi-GAT) in assessing spatio-temporal gait parameters at slow, preferred and fast walking speeds.
    DesJardins AM; Schiller M; Eraqi E; Samuels AN; Galen SS
    Technol Health Care; 2016 Nov; 24(6):843-852. PubMed ID: 27392831
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Walking and running energy expenditure estimated by Caltrac and indirect calorimetry.
    Haymes EM; Byrnes WC
    Med Sci Sports Exerc; 1993 Dec; 25(12):1365-9. PubMed ID: 8107543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost.
    Crouter SE; Schneider PL; Karabulut M; Bassett DR
    Med Sci Sports Exerc; 2003 Aug; 35(8):1455-60. PubMed ID: 12900704
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reliability of lower limb electromyography during overground walking: a comparison of maximal- and sub-maximal normalisation techniques.
    Murley GS; Menz HB; Landorf KB; Bird AR
    J Biomech; 2010 Mar; 43(4):749-56. PubMed ID: 19909958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Familiarisation to treadmill walking in unimpaired older people.
    Wass E; Taylor NF; Matsas A
    Gait Posture; 2005 Jan; 21(1):72-9. PubMed ID: 15536036
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Step counting and energy expenditure estimation in patients with chronic obstructive pulmonary disease and healthy elderly: accuracy of 2 motion sensors.
    Furlanetto KC; Bisca GW; Oldemberg N; Sant'anna TJ; Morakami FK; Camillo CA; Cavalheri V; Hernandes NA; Probst VS; Ramos EM; Brunetto AF; Pitta F
    Arch Phys Med Rehabil; 2010 Feb; 91(2):261-7. PubMed ID: 20159131
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energy expenditure of transfemoral amputees walking on a horizontal and tilted treadmill simulating different outdoor walking conditions.
    Starholm IM; Gjovaag T; Mengshoel AM
    Prosthet Orthot Int; 2010 Jun; 34(2):184-94. PubMed ID: 20141493
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gait characteristics of adults with Down syndrome explain their greater metabolic rate during walking.
    Agiovlasitis S; McCubbin JA; Yun J; Widrick JJ; Pavol MJ
    Gait Posture; 2015 Jan; 41(1):180-4. PubMed ID: 25457480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.