These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25008167)

  • 1. Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB.
    Yamauchi Y; Hirasawa T; Nishii M; Furusawa C; Shimizu H
    J Gen Appl Microbiol; 2014; 60(3):112-8. PubMed ID: 25008167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
    Zhou Z; Wang C; Chen Y; Zhang K; Xu H; Cai H; Chen Z
    Biotechnol Prog; 2015; 31(1):12-9. PubMed ID: 25311136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum.
    Wang C; Zhou Z; Cai H; Chen Z; Xu H
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation.
    Kabus A; Georgi T; Wendisch VF; Bott M
    Appl Microbiol Biotechnol; 2007 May; 75(1):47-53. PubMed ID: 17216441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply.
    Zhan M; Kan B; Dong J; Xu G; Han R; Ni Y
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):45-54. PubMed ID: 30446890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum.
    Bartek T; Blombach B; Lang S; Eikmanns BJ; Wiechert W; Oldiges M; Nöh K; Noack S
    Appl Environ Microbiol; 2011 Sep; 77(18):6644-52. PubMed ID: 21784914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli.
    Sauer U; Canonaco F; Heri S; Perrenoud A; Fischer E
    J Biol Chem; 2004 Feb; 279(8):6613-9. PubMed ID: 14660605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct transcriptional regulation of the two Escherichia coli transhydrogenases PntAB and UdhA.
    Haverkorn van Rijsewijk BRB; Kochanowski K; Heinemann M; Sauer U
    Microbiology (Reading); 2016 Sep; 162(9):1672-1679. PubMed ID: 27488847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.
    Komati Reddy G; Lindner SN; Wendisch VF
    Appl Environ Microbiol; 2015 Mar; 81(6):1996-2005. PubMed ID: 25576602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli.
    Jan J; Martinez I; Wang Y; Bennett GN; San KY
    Biotechnol Prog; 2013; 29(5):1124-30. PubMed ID: 23794523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling.
    Armingol E; Tobar E; Cabrera R
    PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production.
    Shi A; Zhu X; Lu J; Zhang X; Ma Y
    Metab Eng; 2013 Mar; 16():1-10. PubMed ID: 23246519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement of de novo synthesis of pyruvate carboxylase in long-term succinic acid production in Corynebacterium glutamicum.
    Uchikura H; Ninomiya K; Takahashi K; Tsuge Y
    Appl Microbiol Biotechnol; 2020 May; 104(10):4313-4320. PubMed ID: 32232530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of NADPH availability on free fatty acid production in Escherichia coli.
    Li W; Wu H; Li M; San KY
    Biotechnol Bioeng; 2018 Feb; 115(2):444-452. PubMed ID: 28976546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.
    Wang C; Zhang H; Cai H; Zhou Z; Chen Y; Chen Y; Ouyang P
    Appl Biochem Biotechnol; 2014 Jan; 172(1):340-50. PubMed ID: 24078255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation.
    Anderlund M; Nissen TL; Nielsen J; Villadsen J; Rydström J; Hahn-Hägerdal B; Kielland-Brandt MC
    Appl Environ Microbiol; 1999 Jun; 65(6):2333-40. PubMed ID: 10347010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1053-62. PubMed ID: 17965859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corynebacterium glutamicum CgynfM encodes a dicarboxylate transporter applicable to succinate production.
    Fukui K; Nanatani K; Nakayama M; Hara Y; Tokura M; Abe K
    J Biosci Bioeng; 2019 Apr; 127(4):465-471. PubMed ID: 30392965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways.
    Akinterinwa O; Cirino PC
    Appl Environ Microbiol; 2011 Jan; 77(2):706-9. PubMed ID: 21097593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.