These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Hasegawa S; Suda M; Uematsu K; Natsuma Y; Hiraga K; Jojima T; Inui M; Yukawa H Appl Environ Microbiol; 2013 Feb; 79(4):1250-7. PubMed ID: 23241971 [TBL] [Abstract][Full Text] [Related]
23. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Hasegawa S; Uematsu K; Natsuma Y; Suda M; Hiraga K; Jojima T; Inui M; Yukawa H Appl Environ Microbiol; 2012 Feb; 78(3):865-75. PubMed ID: 22138982 [TBL] [Abstract][Full Text] [Related]
24. Enhanced succinic acid production in Corynebacterium glutamicum with increasing the available NADH supply and glucose consumption rate by decreasing H(+)-ATPase activity. Xu H; Zhou Z; Wang C; Chen Z; Cai H Biotechnol Lett; 2016 Jul; 38(7):1181-6. PubMed ID: 27053082 [TBL] [Abstract][Full Text] [Related]
25. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. Inui M; Murakami S; Okino S; Kawaguchi H; Vertès AA; Yukawa H J Mol Microbiol Biotechnol; 2004; 7(4):182-96. PubMed ID: 15383716 [TBL] [Abstract][Full Text] [Related]
26. Improved cell growth and biosynthesis of glycolic acid by overexpression of membrane-bound pyridine nucleotide transhydrogenase. Cabulong RB; Valdehuesa KNG; Bañares AB; Ramos KRM; Nisola GM; Lee WK; Chung WJ J Ind Microbiol Biotechnol; 2019 Feb; 46(2):159-169. PubMed ID: 30554290 [TBL] [Abstract][Full Text] [Related]
27. Identification of succinate exporter in Corynebacterium glutamicum and its physiological roles under anaerobic conditions. Fukui K; Koseki C; Yamamoto Y; Nakamura J; Sasahara A; Yuji R; Hashiguchi K; Usuda Y; Matsui K; Kojima H; Abe K J Biotechnol; 2011 Jun; 154(1):25-34. PubMed ID: 21420450 [TBL] [Abstract][Full Text] [Related]
28. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. Inui M; Kawaguchi H; Murakami S; Vertès AA; Yukawa H J Mol Microbiol Biotechnol; 2004; 8(4):243-54. PubMed ID: 16179801 [TBL] [Abstract][Full Text] [Related]
29. Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Shi F; Huan X; Wang X; Ning J Enzyme Microb Technol; 2012 Jul; 51(2):73-80. PubMed ID: 22664190 [TBL] [Abstract][Full Text] [Related]
30. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Nissen TL; Anderlund M; Nielsen J; Villadsen J; Kielland-Brandt MC Yeast; 2001 Jan; 18(1):19-32. PubMed ID: 11124698 [TBL] [Abstract][Full Text] [Related]
31. Escherichia coli yjjPB genes encode a succinate transporter important for succinate production. Fukui K; Nanatani K; Hara Y; Yamakami S; Yahagi D; Chinen A; Tokura M; Abe K Biosci Biotechnol Biochem; 2017 Sep; 81(9):1837-1844. PubMed ID: 28673128 [TBL] [Abstract][Full Text] [Related]
32. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Chen T; Zhu N; Xia H Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202 [TBL] [Abstract][Full Text] [Related]
33. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources. Tsuge Y; Hasunuma T; Kondo A J Ind Microbiol Biotechnol; 2015 Mar; 42(3):375-89. PubMed ID: 25424693 [TBL] [Abstract][Full Text] [Related]
34. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. Rathnasingh C; Raj SM; Lee Y; Catherine C; Ashok S; Park S J Biotechnol; 2012 Feb; 157(4):633-40. PubMed ID: 21723339 [TBL] [Abstract][Full Text] [Related]
35. NADPH-to-NADH conversion by mitochondrial transhydrogenase is indispensable for sustaining anaerobic metabolism in Euglena gracilis. Nakazawa M; Takahashi M; Hayashi R; Matsubara Y; Kashiyama Y; Ueda M; Inui H; Sakamoto T FEBS Lett; 2021 Dec; 595(23):2922-2930. PubMed ID: 34738635 [TBL] [Abstract][Full Text] [Related]
36. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Okino S; Noburyu R; Suda M; Jojima T; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Dec; 81(3):459-64. PubMed ID: 18777022 [TBL] [Abstract][Full Text] [Related]
37. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Okino S; Inui M; Yukawa H Appl Microbiol Biotechnol; 2005 Sep; 68(4):475-80. PubMed ID: 15672268 [TBL] [Abstract][Full Text] [Related]
38. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Litsanov B; Brocker M; Bott M Appl Environ Microbiol; 2012 May; 78(9):3325-37. PubMed ID: 22389371 [TBL] [Abstract][Full Text] [Related]
39. Deletion of Wang X; Yang H; Zhou W; Liu J; Xu N J Microbiol Biotechnol; 2019 Aug; 29(8):1288-1298. PubMed ID: 31370116 [TBL] [Abstract][Full Text] [Related]
40. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Okino S; Suda M; Fujikura K; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Mar; 78(3):449-54. PubMed ID: 18188553 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]