These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 25008300)
61. Effect of temperature on the development of Steinernema carpocapsae and Steinernema feltiae (Nematoda: Rhabditida) in liquid culture. Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Oct; 84(6):1061-7. PubMed ID: 19455323 [TBL] [Abstract][Full Text] [Related]
62. Steinernema glaseri surface enolase: molecular cloning, biological characterization, and role in host immune suppression. Liu H; Zeng H; Yao Q; Yuan J; Zhang Y; Qiu D; Yang X; Yang H; Liu Z Mol Biochem Parasitol; 2012 Oct; 185(2):89-98. PubMed ID: 22750626 [TBL] [Abstract][Full Text] [Related]
63. Heterorhabditis spp., Neoaplectana spp., and Steinernema kraussei: interspecific and intraspecific differences in infectivity for insects. Bedding RA; Molyneux AS; Akhurst RJ Exp Parasitol; 1983 Apr; 55(2):249-57. PubMed ID: 6832283 [TBL] [Abstract][Full Text] [Related]
64. Soil mediates the interaction of coexisting entomopathogenic nematodes with an insect host. Gruner DS; Ram K; Strong DR J Invertebr Pathol; 2007 Jan; 94(1):12-9. PubMed ID: 17005194 [TBL] [Abstract][Full Text] [Related]
65. Temporal association of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) and bacteria. Gouge DH; Snyder JL J Invertebr Pathol; 2006 Mar; 91(3):147-57. PubMed ID: 16448667 [TBL] [Abstract][Full Text] [Related]
66. Movement patterns in Entomopathogenic nematodes: Continuous vs. temporal. Ruan WB; Shapiro-Ilan D; Lewis EE; Kaplan F; Alborn H; Gu XH; Schliekelman P J Invertebr Pathol; 2018 Jan; 151():137-143. PubMed ID: 29158014 [TBL] [Abstract][Full Text] [Related]
67. Effects of infected insects on secondary invasion of steinernematid entomopathogenic nematodes. Glazer I Parasitology; 1997 Jun; 114 ( Pt 6)():597-604. PubMed ID: 9172429 [TBL] [Abstract][Full Text] [Related]
68. Differences in penetration routes and establishment rates of four entomopathogenic nematode species into four white grub species. Koppenhöfer AM; Grewal PS; Fuzy EM J Invertebr Pathol; 2007 Mar; 94(3):184-95. PubMed ID: 17156793 [TBL] [Abstract][Full Text] [Related]
69. Diversity and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in South Africa. Hatting J; Patricia Stock S; Hazir S J Invertebr Pathol; 2009 Oct; 102(2):120-8. PubMed ID: 19615373 [TBL] [Abstract][Full Text] [Related]
70. EVALUATION OF VIRULENCE OF STEINERNEMA CARPOCAPSAE TO EUROPEAN MOLE CRICKET GRYLLOTALPA GRYLOTALPA L. Stefanovska T; Pisdlisnyuk V Commun Agric Appl Biol Sci; 2014; 79(2):331-4. PubMed ID: 26084111 [TBL] [Abstract][Full Text] [Related]
71. Comparison of the Galleria baiting technique and a direct extraction method for recovering Steinernema (Nematoda: Rhabditida) infective-stage juveniles from soil. Sturhan D; Mrácek Z Folia Parasitol (Praha); 2000; 47(4):315-8. PubMed ID: 11151957 [TBL] [Abstract][Full Text] [Related]
72. Steinernema costaricense n. sp. and S. puntauvense n. sp. (Rhabditida: Steinernematidae), two new entomopathogenic nematodes from Costa Rica. Uribe-Lorío L; Mora M; Stock SP Syst Parasitol; 2007 Nov; 68(3):167-82. PubMed ID: 17896186 [TBL] [Abstract][Full Text] [Related]
73. Group selection on population size affects life-history patterns in the entomopathogenic nematode Steinernema carpocapsae. Bashey F; Lively CM Evolution; 2009 May; 63(5):1301-11. PubMed ID: 19187254 [TBL] [Abstract][Full Text] [Related]
74. Development and population dynamics of Steinernema yirgalemense (Rhabditida: Steinernematidae) and growth characteristics of its associated Xenorhabdus indica symbiont in liquid culture. Ferreira T; Addison MF; Malan AP J Helminthol; 2016 May; 90(3):364-71. PubMed ID: 26156314 [TBL] [Abstract][Full Text] [Related]
75. Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects. Bisch G; Pagès S; McMullen JG; Stock SP; Duvic B; Givaudan A; Gaudriault S J Invertebr Pathol; 2015 Jan; 124():15-22. PubMed ID: 25315609 [TBL] [Abstract][Full Text] [Related]
76. Study on host-seeking behavior and chemotaxis of entomopathogenic nematodes using Pluronic F-127 gel. Li C; Zhou X; Lewis EE; Yu Y; Wang C J Invertebr Pathol; 2019 Feb; 161():54-60. PubMed ID: 30707919 [TBL] [Abstract][Full Text] [Related]
77. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. Malan AP; Knoetze R; Moore SD J Invertebr Pathol; 2011 Oct; 108(2):115-25. PubMed ID: 21839086 [TBL] [Abstract][Full Text] [Related]
78. Steinernema tophus sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from South Africa. Çimen H; Lee MM; Hatting J; Hazir S; Stock SP Zootaxa; 2014 Jun; 3821(3):337-53. PubMed ID: 24989748 [TBL] [Abstract][Full Text] [Related]
79. Optimization of a Host Diet for in vivo Production of Entomopathogenic Nematodes. Shapiro-Ilan D; Guadalupe Rojas M; Morales-Ramos JA; Louis Tedders W J Nematol; 2012 Sep; 44(3):264-73. PubMed ID: 23481558 [TBL] [Abstract][Full Text] [Related]
80. Ecological characterization of Steinernema scarabaei, a scarab-adapted entomopathogenic nematode from New Jersey. Koppenhöfer AM; Fuzy EM J Invertebr Pathol; 2003 Jun; 83(2):139-48. PubMed ID: 12788283 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]