BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 25008382)

  • 1. Mechanical characterization of vocal fold tissue: a review study.
    Miri AK
    J Voice; 2014 Nov; 28(6):657-67. PubMed ID: 25008382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
    Jones CL; Achuthan A; Erath BD
    J Acoust Soc Am; 2015 Feb; 137(2):EL158-64. PubMed ID: 25698044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material and shape optimization for multi-layered vocal fold models using transient loadings.
    Schmidt B; Leugering G; Stingl M; Hüttner B; Agaimy A; Döllinger M
    J Acoust Soc Am; 2013 Aug; 134(2):1261-70. PubMed ID: 23927124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lumped mucosal wave model of the vocal folds revisited: recent extensions and oscillation hysteresis.
    Lucero JC; Koenig LL; Lourenço KG; Ruty N; Pelorson X
    J Acoust Soc Am; 2011 Mar; 129(3):1568-79. PubMed ID: 21428520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biaxial mechanical properties of human vocal fold cover under vocal fold elongation.
    Zhang Z; Samajder H; Long JL
    J Acoust Soc Am; 2017 Oct; 142(4):EL356. PubMed ID: 29092582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L; Pelorson X; Henrich N; Ruty N
    J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronized and Desynchronized Dynamics Observed from Physical Models of the Vocal and Ventricular Folds.
    Matsumoto T; Kanaya M; Matsushima D; Han C; Tokuda IT
    J Voice; 2024 May; 38(3):572-584. PubMed ID: 34903395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-based classification of nonstationary vocal fold vibrations.
    Wurzbacher T; Schwarz R; Döllinger M; Hoppe U; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2006 Aug; 120(2):1012-27. PubMed ID: 16938988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental analysis of the characteristics of artificial vocal folds.
    Misun V; Svancara P; Vasek M
    J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model.
    Schwarz R; Döllinger M; Wurzbacher T; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2008 May; 123(5):2717-32. PubMed ID: 18529190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A synthetic, self-oscillating vocal fold model platform for studying augmentation injection.
    Murray PR; Thomson SL; Smith ME
    J Voice; 2014 Mar; 28(2):133-43. PubMed ID: 24476985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of phonation onset in a two-layer vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2009 Feb; 125(2):1091-102. PubMed ID: 19206884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds.
    Mendelsohn AH; Zhang Z
    J Acoust Soc Am; 2011 Nov; 130(5):2961-8. PubMed ID: 22087924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.
    Tao C; Liu X
    J Acoust Soc Am; 2011 Feb; 129(2):934-43. PubMed ID: 21361450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of gradients in vocal fold elastic modulus on phonation.
    Bhattacharya P; Kelleher JE; Siegmund T
    J Biomech; 2015 Sep; 48(12):3356-63. PubMed ID: 26159059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration parameter extraction from endoscopic image series of the vocal folds.
    Döllinger M; Hoppe U; Hettlich F; Lohscheller J; Schuberth S; Eysholdt U
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):773-81. PubMed ID: 12148815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.