These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

567 related articles for article (PubMed ID: 25008556)

  • 41. DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis.
    Cai X; Xing J; Long CL; Peng Q; Humphrey MB
    J Bone Miner Res; 2017 Nov; 32(11):2207-2218. PubMed ID: 28650106
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ostm1 from Mouse to Human: Insights into Osteoclast Maturation.
    Vacher J; Bruccoleri M; Pata M
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32764302
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Osteocyte-Related Cytokines Regulate Osteoclast Formation and Bone Resorption.
    Kitaura H; Marahleh A; Ohori F; Noguchi T; Shen WR; Qi J; Nara Y; Pramusita A; Kinjo R; Mizoguchi I
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708317
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis.
    Lynch CC
    Bone; 2011 Jan; 48(1):44-53. PubMed ID: 20601294
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Role of FoxOs in Bone Health and Disease.
    Kim HN; Iyer S; Ring R; Almeida M
    Curr Top Dev Biol; 2018; 127():149-163. PubMed ID: 29433736
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Osteoclast diseases.
    Helfrich MH
    Microsc Res Tech; 2003 Aug; 61(6):514-32. PubMed ID: 12879419
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RANK signalling in bone lesions with osteoclast-like giant cells.
    Won KY; Kalil RK; Kim YW; Park YK
    Pathology; 2011 Jun; 43(4):318-21. PubMed ID: 21532526
    [TBL] [Abstract][Full Text] [Related]  

  • 48. p130Cas, Crk-associated substrate, plays important roles in osteoclastic bone resorption.
    Nagai Y; Osawa K; Fukushima H; Tamura Y; Aoki K; Ohya K; Yasuda H; Hikiji H; Takahashi M; Seta Y; Seo S; Kurokawa M; Kato S; Honda H; Nakamura I; Maki K; Jimi E
    J Bone Miner Res; 2013 Dec; 28(12):2449-62. PubMed ID: 23526406
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Osteoclasts and Remodeling Based Bone Formation.
    Kylmaoja E; Nakamura M; Tuukkanen J
    Curr Stem Cell Res Ther; 2016; 11(8):626-633. PubMed ID: 26477623
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Osteoblast and osteoclast cell number and cell activity in postmenopausal osteoporosis.
    Gruber HE; Ivey JL; Thompson ER; Chesnut CH; Baylink DJ
    Miner Electrolyte Metab; 1986; 12(4):246-54. PubMed ID: 3762511
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anti-Resorptive Functions of Poly(ethylene sodium phosphate) on Human Osteoclasts.
    Kootala S; Tokunaga M; Hilborn J; Iwasaki Y
    Macromol Biosci; 2015 Dec; 15(12):1634-40. PubMed ID: 26222677
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Endogenous parathyroid hormone-related protein compensates for the absence of parathyroid hormone in promoting bone accrual in vivo in a model of bone marrow ablation.
    Zhu Q; Zhou X; Zhu M; Wang Q; Goltzman D; Karaplis A; Miao D
    J Bone Miner Res; 2013 Sep; 28(9):1898-911. PubMed ID: 23716486
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Macrophages and Bone Remodeling.
    Weivoda MM; Bradley EW
    J Bone Miner Res; 2023 Mar; 38(3):359-369. PubMed ID: 36651575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts.
    Huang S; Eleniste PP; Wayakanon K; Mandela P; Eipper BA; Mains RE; Allen MR; Bruzzaniti A
    Bone; 2014 Mar; 60():235-45. PubMed ID: 24380811
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Osteoblast-osteoclast interactions.
    Chen X; Wang Z; Duan N; Zhu G; Schwarz EM; Xie C
    Connect Tissue Res; 2018 Mar; 59(2):99-107. PubMed ID: 28324674
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Committed osteoclast precursors colonize the bone and improve the phenotype of a mouse model of autosomal recessive osteopetrosis.
    Cappariello A; Berardi AC; Peruzzi B; Del Fattore A; Ugazio A; Bottazzo GF; Teti A
    J Bone Miner Res; 2010 Jan; 25(1):106-13. PubMed ID: 20091929
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Talin1 and Rap1 are critical for osteoclast function.
    Zou W; Izawa T; Zhu T; Chappel J; Otero K; Monkley SJ; Critchley DR; Petrich BG; Morozov A; Ginsberg MH; Teitelbaum SL
    Mol Cell Biol; 2013 Feb; 33(4):830-44. PubMed ID: 23230271
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A supra-cellular model for coupling of bone resorption to formation during remodeling: lessons from two bone resorption inhibitors affecting bone formation differently.
    Jensen PR; Andersen TL; Pennypacker BL; Duong LT; Engelholm LH; Delaissé JM
    Biochem Biophys Res Commun; 2014 Jan; 443(2):694-9. PubMed ID: 24333871
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glucocorticoids and the osteoclast.
    Teitelbaum SL
    Clin Exp Rheumatol; 2015; 33(4 Suppl 92):S37-9. PubMed ID: 26458014
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Osteoclast-osteoblast communication.
    Matsuo K; Irie N
    Arch Biochem Biophys; 2008 May; 473(2):201-9. PubMed ID: 18406338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.