These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25009055)

  • 41. Low cardiac and aerobic scope in a coastal population of sockeye salmon Oncorhynchus nerka with a short upriver migration.
    Eliason EJ; Wilson SM; Farrell AP; Cooke SJ; Hinch SG
    J Fish Biol; 2013 Jun; 82(6):2104-12. PubMed ID: 23731155
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Parental identity influences progeny responses to incubation thermal stress in sockeye salmon Onchorhynchus nerka.
    Burt JM; Hinch SG; Patterson DA
    J Fish Biol; 2012 Feb; 80(2):444-62. PubMed ID: 22268440
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low evolutionary potential for egg-to-adult viability in Drosophila melanogaster at high temperatures.
    Kristensen TN; Overgaard J; Lassen J; Hoffmann AA; Sgrò C
    Evolution; 2015 Mar; 69(3):803-14. PubMed ID: 25644054
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection and mapping of QTL for temperature tolerance and body size in Chinook salmon (Oncorhynchus tshawytscha) using genotyping by sequencing.
    Everett MV; Seeb JE
    Evol Appl; 2014 Apr; 7(4):480-92. PubMed ID: 24822082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aerobic scope increases throughout an ecologically relevant temperature range in coho salmon.
    Raby GD; Casselman MT; Cooke SJ; Hinch SG; Farrell AP; Clark TD
    J Exp Biol; 2016 Jun; 219(Pt 12):1922-31. PubMed ID: 27059065
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation.
    Garcia de Leaniz C; Fleming IA; Einum S; Verspoor E; Jordan WC; Consuegra S; Aubin-Horth N; Lajus D; Letcher BH; Youngson AF; Webb JH; Vøllestad LA; Villanueva B; Ferguson A; Quinn TP
    Biol Rev Camb Philos Soc; 2007 May; 82(2):173-211. PubMed ID: 17437557
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolution of chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process.
    Quinn TP; Kinnison MT; Unwin MJ
    Genetica; 2001; 112-113():493-513. PubMed ID: 11838785
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-sustaining populations, population sinks or aggregates of strays: chum (Oncorhynchus keta) and Chinook salmon (Oncorhynchus tshawytscha) in the Wood River system, Alaska.
    Lin JE; Hilborn R; Quinn TP; Hauser L
    Mol Ecol; 2011 Dec; 20(23):4925-37. PubMed ID: 22026559
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular evolution at Mhc genes in two populations of chinook salmon Oncorhynchus tshawytscha.
    Miller KM; Withler RE; Beacham TD
    Mol Ecol; 1997 Oct; 6(10):937-54. PubMed ID: 9348703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The upper temperature and hypoxia limits of Atlantic salmon (Salmo salar) depend greatly on the method utilized.
    Sandrelli RM; Gamperl AK
    J Exp Biol; 2023 Sep; 226(18):. PubMed ID: 37622446
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Signals of large scale climate drivers, hatchery enhancement, and marine factors in Yukon River Chinook salmon survival revealed with a Bayesian life history model.
    Cunningham CJ; Westley PAH; Adkison MD
    Glob Chang Biol; 2018 Sep; 24(9):4399-4416. PubMed ID: 29774975
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unusual aerobic performance at high temperatures in juvenile Chinook salmon,
    Poletto JB; Cocherell DE; Baird SE; Nguyen TX; Cabrera-Stagno V; Farrell AP; Fangue NA
    Conserv Physiol; 2017; 5(1):cow067. PubMed ID: 28078086
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterising the Physiological Responses of Chinook Salmon (
    Marcoli R; Symonds JE; Walker SP; Battershill CN; Bird S
    Biology (Basel); 2023 Oct; 12(10):. PubMed ID: 37887052
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sex-specific thermal tolerance limits in the ditch shrimp Palaemon varians: Eco-evolutionary implications under a warming ocean.
    Missionário M; Fernandes JF; Travesso M; Freitas E; Calado R; Madeira D
    J Therm Biol; 2022 Jan; 103():103151. PubMed ID: 35027201
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stress history affects heat tolerance in an aquatic ectotherm (Chinook salmon, Oncorhynchus tshawytscha).
    Rodgers EM; Gomez Isaza DF
    J Therm Biol; 2022 May; 106():103252. PubMed ID: 35636892
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Negligible differences in metabolism and thermal tolerance between diploid and triploid Atlantic salmon (
    Bowden AJ; Andrewartha SJ; Elliott NG; Frappell PB; Clark TD
    J Exp Biol; 2018 Mar; 221(Pt 5):. PubMed ID: 29361579
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Variation in temperature tolerance among families of Atlantic salmon (Salmo salar) is associated with hypoxia tolerance, ventricle size and myoglobin level.
    Anttila K; Dhillon RS; Boulding EG; Farrell AP; Glebe BD; Elliott JA; Wolters WR; Schulte PM
    J Exp Biol; 2013 Apr; 216(Pt 7):1183-90. PubMed ID: 23487268
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Potential for adaptation to climate change in a coral reef fish.
    Munday PL; Donelson JM; Domingos JA
    Glob Chang Biol; 2017 Jan; 23(1):307-317. PubMed ID: 27469983
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simulating fishery-induced evolution in chinook salmon: the role of gear, location, and genetic correlation among traits.
    Eldridge WH; Hard JJ; Naish KA
    Ecol Appl; 2010 Oct; 20(7):1936-48. PubMed ID: 21049881
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments.
    Chen Z; Farrell AP; Matala A; Narum SR
    Mol Ecol; 2018 Feb; 27(3):659-674. PubMed ID: 29290103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.