These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 25009105)

  • 1. Dark-field microscopy in imaging of plasmon resonant nanoparticles.
    Liu M; Chao J; Deng S; Wang K; Li K; Fan C
    Colloids Surf B Biointerfaces; 2014 Dec; 124():111-7. PubMed ID: 25009105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells.
    Gu Z; Jing C; Ying YL; He P; Long YT
    Theranostics; 2015; 5(2):188-95. PubMed ID: 25553107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction.
    Shi L; Jing C; Ma W; Li DW; Halls JE; Marken F; Long YT
    Angew Chem Int Ed Engl; 2013 Jun; 52(23):6011-4. PubMed ID: 23616358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark-field spectroscopy: development, applications and perspectives in single nanoparticle catalysis.
    Wang H; Zhang T; Zhou X
    J Phys Condens Matter; 2019 Nov; 31(47):473001. PubMed ID: 31315095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing.
    Fu L; Lin CT; Karimi-Maleh H; Chen F; Zhao S
    Biosensors (Basel); 2023 Nov; 13(11):. PubMed ID: 37998152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localized surface plasmon resonance spectroscopy and sensing.
    Willets KA; Van Duyne RP
    Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical imaging of individual plasmonic nanoparticles in biological samples.
    Xiao L; Yeung ES
    Annu Rev Anal Chem (Palo Alto Calif); 2014; 7():89-111. PubMed ID: 24818812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive and Simple Detection of Glucose Based on Single Plasmonic Nanorod.
    Xu G; Zhu Y; Pang J
    Anal Sci; 2017; 33(2):223-227. PubMed ID: 28190844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles.
    Liu Y; Huang CZ
    Nanoscale; 2013 Aug; 5(16):7458-66. PubMed ID: 23831964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in localized surface plasmon resonance spectroscopy biosensing.
    Sagle LB; Ruvuna LK; Ruemmele JA; Van Duyne RP
    Nanomedicine (Lond); 2011 Oct; 6(8):1447-62. PubMed ID: 22026381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant Rayleigh light scattering response of individual Au nanoparticles to antigen-antibody interaction.
    Cao C; Sim SJ
    Lab Chip; 2009 Jul; 9(13):1836-9. PubMed ID: 19532956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    ACS Nano; 2013 Jan; 7(1):87-99. PubMed ID: 23194174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging the optical near field in plasmonic nanostructures.
    Merlen A; Lagugné-Labarthet F
    Appl Spectrosc; 2014; 68(12):1307-26. PubMed ID: 25479143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection.
    Fong KE; Yung LY
    Nanoscale; 2013 Dec; 5(24):12043-71. PubMed ID: 24166199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles.
    Zhao J; Jensen L; Sung J; Zou S; Schatz GC; Duyne RP
    J Am Chem Soc; 2007 Jun; 129(24):7647-56. PubMed ID: 17521187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance scattering particles as biological nanosensors in vitro and in vivo.
    Li Y; Jing C; Zhang L; Long YT
    Chem Soc Rev; 2012 Jan; 41(2):632-42. PubMed ID: 21853183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activated Plasmonic Nanoaggregates for Dark-Field in Situ Imaging for HER2 Protein Imaging on Cell Surfaces.
    Guo Y; Liu F; Hu Y; Zheng X; Cao X; Zhu Y; Zhang X; Li D; Zhang Z; Chen SK
    Bioconjug Chem; 2020 Mar; 31(3):631-638. PubMed ID: 31944094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.