These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 25009154)
1. Physiological and biochemical responses to severe drought stress of nine Eucalyptus globulus clones: a multivariate approach. Granda V; Delatorre C; Cuesta C; Centeno ML; Fernández B; Rodríguez A; Feito I Tree Physiol; 2014 Jul; 34(7):778-86. PubMed ID: 25009154 [TBL] [Abstract][Full Text] [Related]
2. Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles. Correia B; Pintó-Marijuan M; Neves L; Brossa R; Dias MC; Costa A; Castro BB; Araújo C; Santos C; Chaves MM; Pinto G Physiol Plant; 2014 Apr; 150(4):580-92. PubMed ID: 24117924 [TBL] [Abstract][Full Text] [Related]
3. Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance. Costa E Silva F; Shvaleva A; Broetto F; Ortuño MF; Rodrigues ML; Almeida MH; Chaves MM; Pereira JS Tree Physiol; 2009 Jan; 29(1):77-86. PubMed ID: 19203934 [TBL] [Abstract][Full Text] [Related]
4. Drought tolerance acquisition in Eucalyptus globulus (Labill.): a research on plant morphology, physiology and proteomics. Valdés AE; Irar S; Majada JP; Rodríguez A; Fernández B; Pagès M J Proteomics; 2013 Feb; 79():263-76. PubMed ID: 23313219 [TBL] [Abstract][Full Text] [Related]
5. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill. Quentin AG; O'Grady AP; Beadle CL; Mohammed C; Pinkard EA Tree Physiol; 2012 Aug; 32(8):958-67. PubMed ID: 22874831 [TBL] [Abstract][Full Text] [Related]
6. Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies. Mitchell PJ; O'Grady AP; Tissue DT; Worledge D; Pinkard EA Tree Physiol; 2014 May; 34(5):443-58. PubMed ID: 24664613 [TBL] [Abstract][Full Text] [Related]
7. Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites. Szota C; Farrell C; Koch JM; Lambers H; Veneklaas EJ Tree Physiol; 2011 Oct; 31(10):1052-66. PubMed ID: 21908435 [TBL] [Abstract][Full Text] [Related]
8. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances. Maseda PH; Fernández RJ Tree Physiol; 2016 Feb; 36(2):243-51. PubMed ID: 26786540 [TBL] [Abstract][Full Text] [Related]
9. Rapid responses of C14 clone of Eucalyptus globulus to root drought stress: Time-course of hormonal and physiological signaling. Granda V; Cuesta C; Alvarez R; Ordás R; Centeno ML; Rodríguez A; Majada JP; Fernández B; Feito I J Plant Physiol; 2011 May; 168(7):661-70. PubMed ID: 21144618 [TBL] [Abstract][Full Text] [Related]
10. Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature. Duan H; Amthor JS; Duursma RA; O'Grady AP; Choat B; Tissue DT Tree Physiol; 2013 Aug; 33(8):779-92. PubMed ID: 23963410 [TBL] [Abstract][Full Text] [Related]
11. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit. Pita P; Pardos JA Tree Physiol; 2001 Jun; 21(9):599-607. PubMed ID: 11390304 [TBL] [Abstract][Full Text] [Related]
12. Gene expression analysis in Eucalyptus globulus exposed to drought stress in a controlled and a field environment indicates different strategies for short- and longer-term acclimation. Correia B; Hancock RD; Valledor L; Pinto G Tree Physiol; 2018 Nov; 38(11):1623-1639. PubMed ID: 30496539 [TBL] [Abstract][Full Text] [Related]
13. Hormonal dynamics during recovery from drought in two Eucalyptus globulus genotypes: from root to leaf. Correia B; Pintó-Marijuan M; Castro BB; Brossa R; López-Carbonell M; Pinto G Plant Physiol Biochem; 2014 Sep; 82():151-60. PubMed ID: 24954071 [TBL] [Abstract][Full Text] [Related]
14. Gene expression in two contrasting hybrid clones of Eucalyptus camaldulensis x Eucalyptus urophylla grown under water deficit conditions. Martins GS; Freitas NC; Máximo WPF; Paiva LV J Plant Physiol; 2018 Oct; 229():122-131. PubMed ID: 30071503 [TBL] [Abstract][Full Text] [Related]
15. Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Costa E Silva F; Shvaleva A; Maroco JP; Almeida MH; Chaves MM; Pereira JS Tree Physiol; 2004 Oct; 24(10):1165-72. PubMed ID: 15294763 [TBL] [Abstract][Full Text] [Related]
16. Responses to mild water deficit and rewatering differ among secondary metabolites but are similar among provenances within Eucalyptus species. McKiernan AB; Potts BM; Brodribb TJ; Hovenden MJ; Davies NW; McAdam SA; Ross JJ; Rodemann T; O'Reilly-Wapstra JM Tree Physiol; 2016 Feb; 36(2):133-47. PubMed ID: 26496959 [TBL] [Abstract][Full Text] [Related]
17. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
18. A comparison of growth, photosynthetic capacity and water stress in Eucalyptus globulus coppice regrowth and seedlings during early development. Drake PL; Mendham DS; White DA; Ogden GN Tree Physiol; 2009 May; 29(5):663-74. PubMed ID: 19324701 [TBL] [Abstract][Full Text] [Related]
19. Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought. Héroult A; Lin YS; Bourne A; Medlyn BE; Ellsworth DS Plant Cell Environ; 2013 Feb; 36(2):262-74. PubMed ID: 22762345 [TBL] [Abstract][Full Text] [Related]