These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 25009473)

  • 1. Spike avalanches in vivo suggest a driven, slightly subcritical brain state.
    Priesemann V; Wibral M; Valderrama M; Pröpper R; Le Van Quyen M; Geisel T; Triesch J; Nikolić D; Munk MH
    Front Syst Neurosci; 2014; 8():108. PubMed ID: 25009473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsampling effects in neuronal avalanche distributions recorded in vivo.
    Priesemann V; Munk MH; Wibral M
    BMC Neurosci; 2009 Apr; 10():40. PubMed ID: 19400967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spike avalanches exhibit universal dynamics across the sleep-wake cycle.
    Ribeiro TL; Copelli M; Caixeta F; Belchior H; Chialvo DR; Nicolelis MA; Ribeiro S
    PLoS One; 2010 Nov; 5(11):e14129. PubMed ID: 21152422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Undersampled critical branching processes on small-world and random networks fail to reproduce the statistics of spike avalanches.
    Ribeiro TL; Ribeiro S; Belchior H; Caixeta F; Copelli M
    PLoS One; 2014; 9(4):e94992. PubMed ID: 24751599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal avalanches differ from wakefulness to deep sleep--evidence from intracranial depth recordings in humans.
    Priesemann V; Valderrama M; Wibral M; Le Van Quyen M
    PLoS Comput Biol; 2013; 9(3):e1002985. PubMed ID: 23555220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organized criticality occurs in non-conservative neuronal networks during Up states.
    Millman D; Mihalas S; Kirkwood A; Niebur E
    Nat Phys; 2010 Oct; 6(10):801-805. PubMed ID: 21804861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of neural population activity toward self-organized criticality.
    Yada Y; Mita T; Sanada A; Yano R; Kanzaki R; Bakkum DJ; Hierlemann A; Takahashi H
    Neuroscience; 2017 Feb; 343():55-65. PubMed ID: 27915209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep.
    Dehghani N; Hatsopoulos NG; Haga ZD; Parker RA; Greger B; Halgren E; Cash SS; Destexhe A
    Front Physiol; 2012; 3():302. PubMed ID: 22934053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Criticality Maximizes Complexity in Neural Tissue.
    Timme NM; Marshall NJ; Bennett N; Ripp M; Lautzenhiser E; Beggs JM
    Front Physiol; 2016; 7():425. PubMed ID: 27729870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Avalanches in self-organized critical neural networks: a minimal model for the neural SOC universality class.
    Rybarsch M; Bornholdt S
    PLoS One; 2014; 9(4):e93090. PubMed ID: 24743324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal avalanches in spontaneous activity in vivo.
    Hahn G; Petermann T; Havenith MN; Yu S; Singer W; Plenz D; Nikolic D
    J Neurophysiol; 2010 Dec; 104(6):3312-22. PubMed ID: 20631221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality.
    Lombardi F; Wang JWJL; Zhang X; Ivanov PC
    EPJ Web Conf; 2020; 230():. PubMed ID: 32655977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-regulated critical brain dynamics originate from high frequency-band activity in the MEG.
    Dürschmid S; Reichert C; Walter N; Hinrichs H; Heinze HJ; Ohl FW; Tononi G; Deliano M
    PLoS One; 2020; 15(6):e0233589. PubMed ID: 32525940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the temporal organization of neuronal avalanches.
    Lombardi F; Herrmann HJ; Plenz D; De Arcangelis L
    Front Syst Neurosci; 2014; 8():204. PubMed ID: 25389393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avalanche criticality in individuals, fluid intelligence, and working memory.
    Xu L; Feng J; Yu L
    Hum Brain Mapp; 2022 Jun; 43(8):2534-2553. PubMed ID: 35146831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Criticality predicts maximum irregularity in recurrent networks of excitatory nodes.
    Karimipanah Y; Ma Z; Wessel R
    PLoS One; 2017; 12(8):e0182501. PubMed ID: 28817580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of network topology on self-organized criticality.
    Hoffmann H
    Phys Rev E; 2018 Feb; 97(2-1):022313. PubMed ID: 29548239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subsampling scaling.
    Levina A; Priesemann V
    Nat Commun; 2017 May; 8():15140. PubMed ID: 28469176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Criticality in Neuronal Avalanches: II. A Theoretical and Empirical Investigation of the Driven Case.
    Hartley C; Taylor TJ; Kiss IZ; Farmer SF; Berthouze L
    J Math Neurosci; 2014; 4():9. PubMed ID: 24872924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.