These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2500949)

  • 1. Bioenergetics and solute transport in lactococci.
    Konings WN; Poolman B; Driessen AJ
    Crit Rev Microbiol; 1989; 16(6):419-76. PubMed ID: 2500949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary transport of amino acids by membrane vesicles derived from lactic acid bacteria.
    Driessen AJ
    Antonie Van Leeuwenhoek; 1989 Aug; 56(2):139-60. PubMed ID: 2508549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate starvation causes a metabolically active but nonculturable state in Lactococcus lactis.
    Ganesan B; Stuart MR; Weimer BC
    Appl Environ Microbiol; 2007 Apr; 73(8):2498-512. PubMed ID: 17293521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial transport: adaptations to natural environments.
    Konings WN
    Antonie Van Leeuwenhoek; 2006 Nov; 90(4):325-42. PubMed ID: 17043914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of scalar protons in metabolic energy generation in lactic acid bacteria.
    Lolkema JS; Poolman B; Konings WN
    J Bioenerg Biomembr; 1995 Aug; 27(4):467-73. PubMed ID: 8595982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cell membrane and the struggle for life of lactic acid bacteria.
    Konings WN
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):3-27. PubMed ID: 12369197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of membrane bioenergetics.
    Wilson TH; Lin EC
    J Supramol Struct; 1980; 13(4):421-46. PubMed ID: 6453255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane systems in which foreign proton pumps are incorporated.
    Driessen AJ; Hellingwerf KJ; Konings WN
    Microbiol Sci; 1987 Jun; 4(6):173-80. PubMed ID: 2856386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of Streptococcus lactis phosphate transport on internal phosphate concentration and internal pH.
    Poolman B; Nijssen RM; Konings WN
    J Bacteriol; 1987 Dec; 169(12):5373-8. PubMed ID: 3119562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.
    Konings WN; Lolkema JS; Bolhuis H; van Veen HW; Poolman B; Driessen AJ
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):117-28. PubMed ID: 9049023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy.
    Poolman B; Molenaar D; Smid EJ; Ubbink T; Abee T; Renault PP; Konings WN
    J Bacteriol; 1991 Oct; 173(19):6030-7. PubMed ID: 1917837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis.
    Rezaïki L; Cesselin B; Yamamoto Y; Vido K; van West E; Gaudu P; Gruss A
    Mol Microbiol; 2004 Sep; 53(5):1331-42. PubMed ID: 15387813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux.
    Cocaign-Bousquet M; Even S; Lindley ND; Loubière P
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):24-32. PubMed ID: 12382039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of yeast suspension density on the accumulation ratio of transported solutes.
    Kotyk A
    Yeast; 1987 Dec; 3(4):263-70. PubMed ID: 3332977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview on sugar metabolism and its control in Lactococcus lactis - the input from in vivo NMR.
    Neves AR; Pool WA; Kok J; Kuipers OP; Santos H
    FEMS Microbiol Rev; 2005 Aug; 29(3):531-54. PubMed ID: 15939503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The metabolic pH response in Lactococcus lactis: an integrative experimental and modelling approach.
    Andersen AZ; Carvalho AL; Neves AR; Santos H; Kummer U; Olsen LF
    Comput Biol Chem; 2009 Feb; 33(1):71-83. PubMed ID: 18829387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.
    Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-fermentation of glucose and citrate by Lactococcus lactis diacetylactis: quantification of the relative metabolic rates by isotopic analysis at natural abundance.
    Goupry S; Gentil E; Akoka S; Robins RJ
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):489-97. PubMed ID: 12750852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ability of acidic pH, growth inhibitors, and glucose to increase the proton motive force and energy spilling of amino acid-fermenting Clostridium sporogenes MD1 cultures.
    Flythe MD; Russell JB
    Arch Microbiol; 2005 May; 183(4):236-42. PubMed ID: 15891933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.