BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25009990)

  • 1. Electronic states of the quasilinear molecule propargylene (HCCCH) from negative ion photoelectron spectroscopy.
    Osborn DL; Vogelhuber KM; Wren SW; Miller EM; Lu YJ; Case AS; Sheps L; McMahon RJ; Stanton JF; Harding LB; Ruscic B; Lineberger WC
    J Am Chem Soc; 2014 Jul; 136(29):10361-72. PubMed ID: 25009990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectron imaging of NCCCN(-): The triplet ground state and the singlet-triplet splitting of dicyanocarbene.
    Goebbert DJ; Pichugin K; Khuseynov D; Wenthold PG; Sanov A
    J Chem Phys; 2010 Jun; 132(22):224301. PubMed ID: 20550391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of the ground and excited states of Al3 and Al3(-). I. 488 nm anion photoelectron spectrum.
    Villalta PW; Leopold DG
    J Chem Phys; 2009 Jan; 130(2):024303. PubMed ID: 19154024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-lying electronic states of CH(3)NO(2) via photoelectron imaging of the nitromethane anion.
    Goebbert DJ; Pichugin K; Sanov A
    J Chem Phys; 2009 Oct; 131(16):164308. PubMed ID: 19894948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ground state of (CS)4 is different from that of (CO)4: an experimental test of a computational prediction by negative ion photoelectron spectroscopy.
    Zhang J; Hrovat DA; Sun Z; Bao X; Borden WT; Wang XB
    J Phys Chem A; 2013 Aug; 117(33):7841-6. PubMed ID: 23886029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic states of thiophenyl and furanyl radicals and dissociation energy of thiophene via photoelectron imaging of negative ions.
    Culberson LM; Sanov A
    J Chem Phys; 2011 May; 134(20):204306. PubMed ID: 21639439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative ion photoelectron spectroscopy confirms the prediction that (CO)5 and (CO)6 each has a singlet ground state.
    Bao X; Hrovat DA; Borden WT; Wang XB
    J Am Chem Soc; 2013 Mar; 135(11):4291-8. PubMed ID: 23445075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of the ground and excited states of Al3 and Al3(-). II. Computational analysis of the 488 nm anion photoelectron spectrum and a reconsideration of the Al3 bond dissociation energy.
    Miller SR; Schultz NE; Truhlar DG; Leopold DG
    J Chem Phys; 2009 Jan; 130(2):024304. PubMed ID: 19154025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of equation-of-motion coupled-cluster methods to low-lying singlet and triplet electronic states of HBO and BOH.
    DeYonker NJ; Li S; Yamaguchi Y; Schaefer HF; Crawford TD; King RA; Peterson KA
    J Chem Phys; 2005 Jun; 122(23):234316. PubMed ID: 16008450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Study of NbMo and NbMo
    Baudhuin MA; Boopalachandran P; Rajan S; Leopold DG
    J Phys Chem A; 2021 Nov; 125(44):9658-9679. PubMed ID: 34723518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gallium oxide and dioxide: investigation of the ground and low-lying electronic states via anion photoelectron spectroscopy.
    Meloni G; Sheehan SM; Neumark DM
    J Chem Phys; 2005 Feb; 122(7):074317. PubMed ID: 15743242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the electronic structure and Au-C chemical bonding in AuC2(-) and AuC2 using high-resolution photoelectron spectroscopy.
    León I; Yang Z; Wang LS
    J Chem Phys; 2014 Feb; 140(8):084303. PubMed ID: 24588165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectron spectroscopic study of the oxyallyl diradical.
    Ichino T; Villano SM; Gianola AJ; Goebbert DJ; Velarde L; Sanov A; Blanksby SJ; Zhou X; Hrovat DA; Borden WT; Lineberger WC
    J Phys Chem A; 2011 Mar; 115(9):1634-49. PubMed ID: 21323385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic characterization of the ground and low-lying electronic states of Ga2N via anion photoelectron spectroscopy.
    Sheehan SM; Meloni G; Parsons BF; Wehres N; Neumark DM
    J Chem Phys; 2006 Feb; 124(6):64303. PubMed ID: 16483203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation into low-lying electronic states of HCS₂ via threshold photoelectron imaging.
    Qin Z; Cong R; Liu Z; Xie H; Tang Z; Fan H
    J Chem Phys; 2014 Jun; 140(21):214318. PubMed ID: 24908019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The negative ion photoelectron spectrum of meta-benzoquinone radical anion (MBQ˙⁻): a joint experimental and computational study.
    Chen B; Hrovat DA; Deng SH; Zhang J; Wang XB; Borden WT
    J Am Chem Soc; 2014 Mar; 136(9):3589-96. PubMed ID: 24548105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic investigation of Al2N and its anion via negative ion photoelectron spectroscopy.
    Meloni G; Sheehan SM; Parsons BF; Neumark DM
    J Phys Chem A; 2006 Mar; 110(10):3527-32. PubMed ID: 16526632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C-H bond dissociation energy of furan: photoelectron spectroscopy of the furanide anion.
    Vogelhuber KM; Wren SW; Sheps L; Lineberger WC
    J Chem Phys; 2011 Feb; 134(6):064302. PubMed ID: 21322675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectron spectroscopy of HC4N-.
    Vogelhuber KM; Wren SW; Shaffer CJ; McMahon RJ; McCoy AB; Lineberger WC
    J Chem Phys; 2011 Nov; 135(20):204307. PubMed ID: 22128935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant photoelectron spectroscopy of Au2(-) via a Feshbach state using high-resolution photoelectron imaging.
    León I; Yang Z; Wang LS
    J Chem Phys; 2013 Nov; 139(19):194306. PubMed ID: 24320325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.