These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25010118)

  • 1. Quantum dot opto-mechanics in a fully self-assembled nanowire.
    Montinaro M; Wüst G; Munsch M; Fontana Y; Russo-Averchi E; Heiss M; Fontcuberta I Morral A; Warburton RJ; Poggio M
    Nano Lett; 2014 Aug; 14(8):4454-60. PubMed ID: 25010118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal Phase Quantum Dots in the Ultrathin Core of GaAs-AlGaAs Core-Shell Nanowires.
    Loitsch B; Winnerl J; Grimaldi G; Wierzbowski J; Rudolph D; Morkötter S; Döblinger M; Abstreiter G; Koblmüller G; Finley JJ
    Nano Lett; 2015 Nov; 15(11):7544-51. PubMed ID: 26455732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Catalyzed AlGaAs Nanowires and AlGaAs/GaAs Nanowire-Quantum Dots on Si Substrates.
    Boras G; Yu X; Fonseka HA; Davis G; Velichko AV; Gott JA; Zeng H; Wu S; Parkinson P; Xu X; Mowbray D; Sanchez AM; Liu H
    J Phys Chem C Nanomater Interfaces; 2021 Jul; 125(26):14338-14347. PubMed ID: 34276869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large optical Stark shifts in single quantum dots coupled to core-shell GaAs/AlGaAs nanowires.
    Yu Y; Wei YM; Wang J; Li JH; Shang XJ; Ni HQ; Niu ZC; Wang XH; Yu SY
    Nanoscale; 2017 May; 9(17):5483-5488. PubMed ID: 28401237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large and Uniform Optical Emission Shifts in Quantum Dots Strained along Their Growth Axis.
    Stepanov P; Elzo-Aizarna M; Bleuse J; Malik NS; Curé Y; Gautier E; Favre-Nicolin V; Gérard JM; Claudon J
    Nano Lett; 2016 May; 16(5):3215-20. PubMed ID: 27058255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GaAs quantum dots in a GaP nanowire photodetector.
    Kuyanov P; McNamee SA; LaPierre RR
    Nanotechnology; 2018 Mar; 29(12):124003. PubMed ID: 29350630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purcell Effect and Beaming of Emission in Hybrid AlGaAs Nanowires with GaAs Quantum Dots.
    Reznik RR; Cirlin GE; Kotlyar KP; Ilkiv IV; Akopian N; Leandro L; Nikolaev VV; Belonovski AV; Kaliteevski MA
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation and tunability of room temperature photoluminescence of GaAs/GaInAs core-multiple-quantum-well shell nanowire structure grown on Si (100) by molecular beam epitaxy.
    Park KW; Park CY; Ravindran S; Jang JS; Jo YR; Kim BJ; Lee YT
    Nanoscale Res Lett; 2014; 9(1):626. PubMed ID: 25489280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the Optimal Shell Thickness for Self-Catalyzed GaAs/AlGaAs Core-Shell Nanowires on Silicon.
    Songmuang R; Giang le TT; Bleuse J; Den Hertog M; Niquet YM; Dang le S; Mariette H
    Nano Lett; 2016 Jun; 16(6):3426-33. PubMed ID: 27081785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally-driven formation method for growing (quantum) dots on sidewalls of self-catalysed thin nanowires.
    Zhang Y; Fonseka HA; Yang H; Yu X; Jurczak P; Huo S; Sanchez AM; Liu H
    Nanoscale Horiz; 2022 Feb; 7(3):311-318. PubMed ID: 35119067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single InAs quantum dot grown at the junction of branched gold-free GaAs nanowire.
    Yu Y; Li MF; He JF; He YM; Wei YJ; He Y; Zha GW; Shang XJ; Wang J; Wang LJ; Wang GW; Ni HQ; Lu CY; Niu ZC
    Nano Lett; 2013 Apr; 13(4):1399-404. PubMed ID: 23464836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy.
    Fan D; Li S; Kang N; Caroff P; Wang LB; Huang YQ; Deng MT; Yu CL; Xu HQ
    Nanoscale; 2015 Sep; 7(36):14822-8. PubMed ID: 26308470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of InAs quantum dots on GaAs nanowires by metal organic chemical vapor deposition.
    Yan X; Zhang X; Ren X; Huang H; Guo J; Guo X; Liu M; Wang Q; Cai S; Huang Y
    Nano Lett; 2011 Sep; 11(9):3941-5. PubMed ID: 21848312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strongly polarized quantum-dot-like light emitters embedded in GaAs/GaNAs core/shell nanowires.
    Filippov S; Jansson M; Stehr JE; Palisaitis J; Persson PO; Ishikawa F; Chen WM; Buyanova IA
    Nanoscale; 2016 Sep; 8(35):15939-47. PubMed ID: 27537077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled quantum dots in a nanowire system for quantum photonics.
    Heiss M; Fontana Y; Gustafsson A; Wüst G; Magen C; O'Regan DD; Luo JW; Ketterer B; Conesa-Boj S; Kuhlmann AV; Houel J; Russo-Averchi E; Morante JR; Cantoni M; Marzari N; Arbiol J; Zunger A; Warburton RJ; Fontcuberta i Morral A
    Nat Mater; 2013 May; 12(5):439-44. PubMed ID: 23377293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear spin quantum register in an optically active semiconductor quantum dot.
    Chekhovich EA; da Silva SFC; Rastelli A
    Nat Nanotechnol; 2020 Dec; 15(12):999-1004. PubMed ID: 32989238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of nanometer-scale structures and electrostatic properties of InAs quantum dots decorating GaAs/AlAs core/shell nanowires.
    Qi T; Cheng Y; Cheng F; Li L; Li C; Jia S; Yan X; Zhang X; Wang J; Gao Y
    Nanotechnology; 2020 Mar; 31(24):245701. PubMed ID: 32059202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertically stacked quantum dot pairs fabricated by nanohole filling.
    Sonnenberg D; Küster A; Graf A; Heyn Ch; Hansen W
    Nanotechnology; 2014 May; 25(21):215602. PubMed ID: 24784358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation effects on GaAs/AlGaAs core/shell ensemble nanowires and nanowire infrared photodetectors.
    Li F; Li Z; Tan L; Zhou Y; Ma J; Lysevych M; Fu L; Tan HH; Jagadish C
    Nanotechnology; 2017 Mar; 28(12):125702. PubMed ID: 28140378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanowire Quantum Dots Tuned to Atomic Resonances.
    Leandro L; Gunnarsson CP; Reznik R; Jöns KD; Shtrom I; Khrebtov A; Kasama T; Zwiller V; Cirlin G; Akopian N
    Nano Lett; 2018 Nov; 18(11):7217-7221. PubMed ID: 30336054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.