These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 25010200)

  • 21. Modelling Wolbachia infection in a sex-structured mosquito population carrying West Nile virus.
    Farkas JZ; Gourley SA; Liu R; Yakubu AA
    J Math Biol; 2017 Sep; 75(3):621-647. PubMed ID: 28097419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Replication potential and different modes of transmission of West Nile virus in an Indian strain of Culex gelidus Theobald (Diptera: Culicidae) mosquitoes.
    Sudeep AB; Ghodke YS; Gokhale MD; George RP; Dhaigude SD; Bondre VP
    J Vector Borne Dis; 2014 Dec; 51(4):333-8. PubMed ID: 25540967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vector competence of Culex pipiens quinquefasciatus (Diptera: Culicidae) for West Nile virus isolates from Florida.
    Richards SL; Anderson SL; Lord CC
    Trop Med Int Health; 2014 May; 19(5):610-7. PubMed ID: 24898274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus.
    Turell MJ; Dohm DJ; Sardelis MR; Oguinn ML; Andreadis TG; Blow JA
    J Med Entomol; 2005 Jan; 42(1):57-62. PubMed ID: 15691009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Infection and dissemination of West Nile virus in China by the potential vector, Culex pipiens pallens.
    Jiang S; Wang Z; Guo X; Zhang Y; Li C; Dong Y; Xing D; Zhao T
    J Vector Ecol; 2014 Jun; 39(1):78-82. PubMed ID: 24820559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes.
    Hall-Mendelin S; McLean BJ; Bielefeldt-Ohmann H; Hobson-Peters J; Hall RA; van den Hurk AF
    Parasit Vectors; 2016 Jul; 9(1):414. PubMed ID: 27457250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vertebrate attenuated West Nile virus mutants have differing effects on vector competence in Culex tarsalis mosquitoes.
    Van Slyke GA; Jia Y; Whiteman MC; Wicker JA; Barrett ADT; Kramer LD
    J Gen Virol; 2013 May; 94(Pt 5):1069-1072. PubMed ID: 23303828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative Vector Competence of North American
    Romo H; Papa A; Kading R; Clark R; Delorey M; Brault AC
    Am J Trop Med Hyg; 2018 Jun; 98(6):1863-1869. PubMed ID: 29637885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effect of Fluctuating Incubation Temperatures on West Nile Virus Infection in
    McGregor BL; Kenney JL; Connelly CR
    Viruses; 2021 Sep; 13(9):. PubMed ID: 34578403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of extrinsic incubation temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus Say (Diptera: Culicidae) for West Nile virus.
    Richards SL; Mores CN; Lord CC; Tabachnick WJ
    Vector Borne Zoonotic Dis; 2007; 7(4):629-36. PubMed ID: 18021028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America.
    Andreadis TG
    J Am Mosq Control Assoc; 2012 Dec; 28(4 Suppl):137-51. PubMed ID: 23401954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of enhanced vector transmission of a new West Nile virus strain in an outbreak of equine disease in Australia in 2011.
    van den Hurk AF; Hall-Mendelin S; Webb CE; Tan CS; Frentiu FD; Prow NA; Hall RA
    Parasit Vectors; 2014 Dec; 7():586. PubMed ID: 25499981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vector-host interactions governing epidemiology of West Nile virus in Southern California.
    Molaei G; Cummings RF; Su T; Armstrong PM; Williams GA; Cheng ML; Webb JP; Andreadis TG
    Am J Trop Med Hyg; 2010 Dec; 83(6):1269-82. PubMed ID: 21118934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced early West Nile virus infection in young chickens infected by mosquito bite: effect of viral dose.
    Styer LM; Bernard KA; Kramer LD
    Am J Trop Med Hyg; 2006 Aug; 75(2):337-45. PubMed ID: 16896145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission.
    Reisen WK; Fang Y; Martinez VM
    J Med Entomol; 2005 May; 42(3):367-75. PubMed ID: 15962789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [West Nile virus transmission risk in the Czech Republic].
    Vlčková J; Rupeš V; Horáková D; Kollárová H; Holý O
    Epidemiol Mikrobiol Imunol; 2015 Jun; 64(2):80-6. PubMed ID: 26099611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus.
    Bolling BG; Olea-Popelka FJ; Eisen L; Moore CG; Blair CD
    Virology; 2012 Jun; 427(2):90-7. PubMed ID: 22425062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. West Nile virus infection decreases fecundity of Culex tarsalis females.
    Styer LM; Meola MA; Kramer LD
    J Med Entomol; 2007 Nov; 44(6):1074-85. PubMed ID: 18047209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Horizontal and vertical transmission of West Nile virus genotype NY99 by Culex salinarius and genotypes NY99 and WN02 by Culex tarsalis.
    Anderson JF; Main AJ; Cheng G; Ferrandino FJ; Fikrig E
    Am J Trop Med Hyg; 2012 Jan; 86(1):134-9. PubMed ID: 22232464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of Culex and Aedes mosquitoes in southwestern Nigeria revealed no West Nile virus activity.
    Sule WF; Oluwayelu DO
    Pan Afr Med J; 2016; 23():116. PubMed ID: 27279943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.