BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25010248)

  • 1. Cell electrofusion: past and future perspectives for antibody production and cancer cell vaccines.
    Kandušer M; Ušaj M
    Expert Opin Drug Deliv; 2014 Dec; 11(12):1885-98. PubMed ID: 25010248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient generation of stable antibody forming hybridoma cells by electrofusion.
    Schmitt JJ; Zimmermann U; Neil GA
    Hybridoma; 1989 Feb; 8(1):107-15. PubMed ID: 2925206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell electrofusion using nanosecond electric pulses.
    Rems L; Ušaj M; Kandušer M; Reberšek M; Miklavčič D; Pucihar G
    Sci Rep; 2013 Nov; 3():3382. PubMed ID: 24287643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of bulk cell electrofusion in vitro for production of human-mouse heterohybridoma cells.
    Trontelj K; Rebersek M; Kanduser M; Serbec VC; Sprohar M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):124-9. PubMed ID: 18667367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrofusion by a bipolar pulsed electric field: Increased cell fusion efficiency for monoclonal antibody production.
    Ke Q; Li C; Wu M; Ge L; Yao C; Yao C; Mi Y
    Bioelectrochemistry; 2019 Jun; 127():171-179. PubMed ID: 30831355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilizing antibody secretion of human Epstein Barr virus-activated B-lymphocytes with hybridoma formation by electrofusion.
    Perkins S; Foung SK
    Methods Mol Biol; 1995; 48():295-307. PubMed ID: 8528401
    [No Abstract]   [Full Text] [Related]  

  • 7. How medium osmolarity influences dielectrophoretically assisted on-chip electrofusion.
    Hamdi FS; Français O; Dufour-Gergam E; Le Pioufle B
    Bioelectrochemistry; 2014 Dec; 100():27-35. PubMed ID: 25012938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in the research of cell electrofusion under microgravity].
    Sun Y; Yuan Y; Yi Z; Zhuang F; Fan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):720-3. PubMed ID: 18693464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-throughput dielectrophoresis-based cell electrofusion microfluidic device.
    Hu N; Yang J; Yin ZQ; Ai Y; Qian S; Svir IB; Xia B; Yan JW; Hou WS; Zheng XL
    Electrophoresis; 2011 Sep; 32(18):2488-95. PubMed ID: 21853446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell activation by CpG ODN leads to improved electrofusion in hybridoma production.
    Kato M; Sasamori E; Chiba T; Hanyu Y
    J Immunol Methods; 2011 Oct; 373(1-2):102-10. PubMed ID: 21878337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Lipid Antioxidant α-Tocopherol on Cell Viability and Electrofusion Yield of B16-F1 Cells In Vitro.
    Kanduser M; Kokalj Imsirovic M; Usaj M
    J Membr Biol; 2019 Feb; 252(1):105-114. PubMed ID: 30671620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On chip electrofusion of single human B cells and mouse myeloma cells for efficient hybridoma generation.
    Kemna EW; Wolbers F; Vermes I; van den Berg A
    Electrophoresis; 2011 Nov; 32(22):3138-46. PubMed ID: 22025094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Establishment of hybridoma secreting anti-mycobacteria monoclonal antibody by using electrofusion technique].
    Guo M; Pan Z; Wang H
    Wei Sheng Wu Xue Bao; 1998 Oct; 38(5):393-5. PubMed ID: 12549406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrofusion of single cells in picoliter droplets.
    Schoeman RM; van den Beld WTE; Kemna EWM; Wolbers F; Eijkel JCT; van den Berg A
    Sci Rep; 2018 Feb; 8(1):3714. PubMed ID: 29487332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased human hybridoma formation by electrofusion of human B cells with heteromyeloma SPAM-8 cells.
    Panova I; Gustafsson B
    Hybridoma; 1995 Jun; 14(3):265-9. PubMed ID: 7590790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The systematic study of the electroporation and electrofusion of B16-F1 and CHO cells in isotonic and hypotonic buffer.
    Usaj M; Kanduser M
    J Membr Biol; 2012 Sep; 245(9):583-90. PubMed ID: 22843161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-cell electrofusion: optimization of electric field amplitude and hypotonic treatment for mouse melanoma (B16-F1) and Chinese Hamster ovary (CHO) cells.
    Usaj M; Trontelj K; Miklavcic D; Kanduser M
    J Membr Biol; 2010 Jul; 236(1):107-16. PubMed ID: 20628737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD19+ B lymphocytes are the major source of human antibody-secreting hybridomas generated by electrofusion.
    Schmidt E; Leinfelder U; Gessner P; Zillikens D; Bröcker EB; Zimmermann U
    J Immunol Methods; 2001 Sep; 255(1-2):93-102. PubMed ID: 11470290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of an electroporation apparatus for the production of murine hybridomas.
    Hewish DR; Werkmeister JA
    J Immunol Methods; 1989 Jun; 120(2):285-9. PubMed ID: 2472456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic approach towards hybridoma generation for cancer immunotherapy.
    Lu YT; Pendharkar GP; Lu CH; Chang CM; Liu CH
    Oncotarget; 2015 Nov; 6(36):38764-76. PubMed ID: 26462149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.