These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25010248)

  • 21. A microfluidic approach towards hybridoma generation for cancer immunotherapy.
    Lu YT; Pendharkar GP; Lu CH; Chang CM; Liu CH
    Oncotarget; 2015 Nov; 6(36):38764-76. PubMed ID: 26462149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrofusion between heterogeneous-sized mammalian cells in a pellet: potential applications in drug delivery and hybridoma formation.
    Li LH; Hensen ML; Zhao YL; Hui SW
    Biophys J; 1996 Jul; 71(1):479-86. PubMed ID: 8804630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in hybridoma preparation using electrofusion technology.
    Kou J; Shen J; Wang Z; Yu W
    Biotechnol J; 2023 Oct; 18(10):e2200428. PubMed ID: 37402172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new method to generate quadromas by electrofusion and FACS sorting.
    Kreutz FT; Xu DZ; Suresh MR
    Hybridoma; 1998 Jun; 17(3):267-73. PubMed ID: 9708829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic control of cell pairing and fusion.
    Skelley AM; Kirak O; Suh H; Jaenisch R; Voldman J
    Nat Methods; 2009 Feb; 6(2):147-52. PubMed ID: 19122668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced hybridoma production by electrofusion in strongly hypo-osmolar solutions.
    Schmitt JJ; Zimmermann U
    Biochim Biophys Acta; 1989 Jul; 983(1):42-50. PubMed ID: 2758049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism study on the influences of buffer osmotic pressure on microfluidic chip-based cell electrofusion.
    Xu M; Zhang X; Bai Y; Wang X; Yang J; Hu N
    APL Bioeng; 2024 Jun; 8(2):026103. PubMed ID: 38638144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell electrofusion based on nanosecond/microsecond pulsed electric fields.
    Li C; Ke Q; Yao C; Mi Y; Liu H; Lv Y; Yao C
    PLoS One; 2018; 13(5):e0197167. PubMed ID: 29795594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybridoma technologies for antibody production.
    Tomita M; Tsumoto K
    Immunotherapy; 2011 Mar; 3(3):371-80. PubMed ID: 21395379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electro Cell Fusion for Hybridoma Production.
    Greenfield EA
    Cold Spring Harb Protoc; 2019 Oct; 2019(10):. PubMed ID: 31575798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human hybridoma generation by hypo-osmolar electrofusion: characterization of human monoclonal antibodies to Schistosoma mansoni parasite antigens.
    Klock G; Wisnewski AV; el-Bassiouni EA; Ramadan MI; Gessner P; Zimmermann U; Kresina TF
    Hybridoma; 1992 Aug; 11(4):469-81. PubMed ID: 1398684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines.
    Scott-Taylor TH; Pettengell R; Clarke I; Stuhler G; La Barthe MC; Walden P; Dalgleish AG
    Biochim Biophys Acta; 2000 Mar; 1500(3):265-79. PubMed ID: 10699368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [A strategy for the production of human monoclonal antibodies].
    Chiba J
    Hum Cell; 1988 Mar; 1(1):31-6. PubMed ID: 2856441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of human monoclonal antibodies against HIV-1 proteins; electrofusion and Epstein-Barr virus transformation for peripheral blood lymphocyte immortalization.
    Buchacher A; Predl R; Strutzenberger K; Steinfellner W; Trkola A; Purtscher M; Gruber G; Tauer C; Steindl F; Jungbauer A
    AIDS Res Hum Retroviruses; 1994 Apr; 10(4):359-69. PubMed ID: 7520721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of specific human mab's by a small scale electrofusion technique: the influence of some physical and chemical factors on hybridoma yield of human peripheral blood lymphocytes XCB-F7 fusions.
    Glaser RW; Jahn S; Grunow R
    Allerg Immunol (Leipz); 1989; 35(2):123-32. PubMed ID: 2788981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The generation of Ig-secreting UC 729-6 derived human hybridomas by electrofusion.
    Pratt M; Mikhalev A; Glassy MC
    Hybridoma; 1987 Oct; 6(5):469-77. PubMed ID: 3500113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The application of electroporation to transfect hematopoietic cells and to deliver drugs and vaccines transcutaneously for cancer treatment.
    Hui SW
    Technol Cancer Res Treat; 2002 Oct; 1(5):373-84. PubMed ID: 12625763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field.
    Liu L; Mao Z; Zhang J; Liu N; Liu QH
    PLoS One; 2016; 11(7):e0158739. PubMed ID: 27391692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications.
    Perrier DL; Rems L; Boukany PE
    Adv Colloid Interface Sci; 2017 Nov; 249():248-271. PubMed ID: 28499600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct comparison of electric field-mediated and PEG-mediated cell fusion for the generation of antibody producing hybridomas.
    Karsten U; Stolley P; Walther I; Papsdorf G; Weber S; Conrad K; Pasternak L; Kopp J
    Hybridoma; 1988 Dec; 7(6):627-33. PubMed ID: 3235098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.