BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25010350)

  • 1. Coupling of transmembrane helix orientation to membrane release of the juxtamembrane region in FGFR3.
    Tamagaki H; Furukawa Y; Yamaguchi R; Hojo H; Aimoto S; Smith SO; Sato T
    Biochemistry; 2014 Aug; 53(30):5000-7. PubMed ID: 25010350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FGFR3 unliganded dimer stabilization by the juxtamembrane domain.
    Sarabipour S; Hristova K
    J Mol Biol; 2015 Apr; 427(8):1705-14. PubMed ID: 25688803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane helix orientation influences membrane binding of the intracellular juxtamembrane domain in Neu receptor peptides.
    Matsushita C; Tamagaki H; Miyazawa Y; Aimoto S; Smith SO; Sato T
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1646-51. PubMed ID: 23319611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGFR3 transmembrane domain interactions persist in the presence of its extracellular domain.
    Sarabipour S; Hristova K
    Biophys J; 2013 Jul; 105(1):165-71. PubMed ID: 23823235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the N-Terminal Transmembrane Helix Contacts in the Activation of FGFR3.
    Matsuoka D; Kamiya M; Sato T; Sugita Y
    J Comput Chem; 2020 Mar; 41(6):561-572. PubMed ID: 31804721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.
    Mineev KS; Lesovoy DM; Usmanova DR; Goncharuk SA; Shulepko MA; Lyukmanova EN; Kirpichnikov MP; Bocharov EV; Arseniev AS
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):164-72. PubMed ID: 24036227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.
    Sarabipour S; Del Piccolo N; Hristova K
    Acc Chem Res; 2015 Aug; 48(8):2262-9. PubMed ID: 26244699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the achondroplasia mutation on FGFR3 dimerization and FGFR3 structural response to fgf1 and fgf2: A quantitative FRET study in osmotically derived plasma membrane vesicles.
    Sarabipour S; Hristova K
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1436-42. PubMed ID: 27040652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The A391E mutation enhances FGFR3 activation in the absence of ligand.
    Chen F; Degnin C; Laederich M; Horton WA; Hristova K
    Biochim Biophys Acta; 2011 Aug; 1808(8):2045-50. PubMed ID: 21536014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of dimerization efficiency of transmembrane domains in activation of fibroblast growth factor receptor 3.
    Volynsky PE; Polyansky AA; Fakhrutdinova GN; Bocharov EV; Efremov RG
    J Am Chem Soc; 2013 Jun; 135(22):8105-8. PubMed ID: 23679838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FGFR3 dimer stabilization due to a single amino acid pathogenic mutation.
    Li E; You M; Hristova K
    J Mol Biol; 2006 Feb; 356(3):600-12. PubMed ID: 16384584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The strong dimerization of the transmembrane domain of the fibroblast growth factor receptor (FGFR) is modulated by C-terminal juxtamembrane residues.
    Peng WC; Lin X; Torres J
    Protein Sci; 2009 Feb; 18(2):450-9. PubMed ID: 19165726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pathogenic A391E mutation in FGFR3 induces a structural change in the transmembrane domain dimer.
    Mudumbi KC; Julius A; Herrmann J; Li E
    J Membr Biol; 2013 Jun; 246(6):487-93. PubMed ID: 23727984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling transmembrane domain dimers/trimers of plexin receptors: implications for mechanisms of signal transmission across the membrane.
    Zhang L; Polyansky A; Buck M
    PLoS One; 2015; 10(4):e0121513. PubMed ID: 25837709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of the EGFR juxtamembrane domain with PIP2-containing lipid bilayers: Insights from multiscale molecular dynamics simulations.
    Abd Halim KB; Koldsø H; Sansom MSP
    Biochim Biophys Acta; 2015 May; 1850(5):1017-1025. PubMed ID: 25219456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple consequences of a single amino acid pathogenic RTK mutation: the A391E mutation in FGFR3.
    Chen F; Sarabipour S; Hristova K
    PLoS One; 2013; 8(2):e56521. PubMed ID: 23437153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Method to Study Heterodimerization of Membrane Proteins and Its Application to Fibroblast Growth Factor Receptors.
    Del Piccolo N; Sarabipour S; Hristova K
    J Biol Chem; 2017 Jan; 292(4):1288-1301. PubMed ID: 27927983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the membrane reconstituted transmembrane-juxtamembrane peptide EGFR(622-660) and its interaction with Ca2+/calmodulin.
    Sato T; Pallavi P; Golebiewska U; McLaughlin S; Smith SO
    Biochemistry; 2006 Oct; 45(42):12704-14. PubMed ID: 17042488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.
    Bocharov EV; Lesovoy DM; Goncharuk SA; Goncharuk MV; Hristova K; Arseniev AS
    Structure; 2013 Nov; 21(11):2087-93. PubMed ID: 24120763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural requirements of the extracellular to transmembrane domain junction for erythropoietin receptor function.
    Kubatzky KF; Liu W; Goldgraben K; Simmerling C; Smith SO; Constantinescu SN
    J Biol Chem; 2005 Apr; 280(15):14844-54. PubMed ID: 15657048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.