These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25010694)

  • 1. On plant detection of intact tomato fruits using image analysis and machine learning methods.
    Yamamoto K; Guo W; Yoshioka Y; Ninomiya S
    Sensors (Basel); 2014 Jul; 14(7):12191-206. PubMed ID: 25010694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal fluorescence waveband determination for detecting defective cherry tomatoes using a fluorescence excitation-emission matrix.
    Baek IS; Kim MS; Lee H; Lee WH; Cho BK
    Sensors (Basel); 2014 Nov; 14(11):21483-96. PubMed ID: 25405507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intact Detection of Highly Occluded Immature Tomatoes on Plants Using Deep Learning Techniques.
    Mu Y; Chen TS; Ninomiya S; Guo W
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Automated, Clip-Type, Small Internet of Things Camera-Based Tomato Flower and Fruit Monitoring and Harvest Prediction System.
    Lee U; Islam MP; Kochi N; Tokuda K; Nakano Y; Naito H; Kawasaki Y; Ota T; Sugiyama T; Ahn DH
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Node Detection and Internode Length Estimation of Tomato Seedlings Based on Image Analysis and Machine Learning.
    Yamamoto K; Guo W; Ninomiya S
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.
    Blasco J; Munera S; Aleixos N; Cubero S; Molto E
    Adv Biochem Eng Biotechnol; 2017; 161():71-91. PubMed ID: 28289768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Quantitative Trait Loci (QTL) Associated with the Fruit Morphology of Tomato.
    Adhikari P; McNellie J; Panthee DR
    Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 32987633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online recognition and yield estimation of tomato in plant factory based on YOLOv3.
    Wang X; Vladislav Z; Viktor O; Wu Z; Zhao M
    Sci Rep; 2022 May; 12(1):8686. PubMed ID: 35606537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Mature-Tomato Detection Algorithm Using Machine Learning and Color Analysis.
    Liu G; Mao S; Kim JH
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species.
    Brewer MT; Lang L; Fujimura K; Dujmovic N; Gray S; van der Knaap E
    Plant Physiol; 2006 May; 141(1):15-25. PubMed ID: 16684933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of SlPRE2, an atypical bHLH transcription factor, affects plant morphology and fruit pigment accumulation in tomato.
    Zhu Z; Chen G; Guo X; Yin W; Yu X; Hu J; Hu Z
    Sci Rep; 2017 Jul; 7(1):5786. PubMed ID: 28724949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stored human urine supplemented with wood ash as fertilizer in tomato (Solanum lycopersicum) cultivation and its impacts on fruit yield and quality.
    Pradhan SK; Holopainen JK; Heinonen-Tanski H
    J Agric Food Chem; 2009 Aug; 57(16):7612-7. PubMed ID: 19645508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biostimulants from food processing by-products: agronomic, quality and metabolic impacts on organic tomato (Solanum lycopersicum L.).
    Abou Chehade L; Al Chami Z; De Pascali SA; Cavoski I; Fanizzi FP
    J Sci Food Agric; 2018 Mar; 98(4):1426-1436. PubMed ID: 28771745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper.
    Paran I; van der Knaap E
    J Exp Bot; 2007; 58(14):3841-52. PubMed ID: 18037678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of fruit bag color on the microenvironment, yield and quality of tomato fruits].
    Wang L; Gao FS; Xu K; Xu N
    Ying Yong Sheng Tai Xue Bao; 2013 Aug; 24(8):2229-34. PubMed ID: 24380342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon.
    Monforte AJ; Diaz A; Caño-Delgado A; van der Knaap E
    J Exp Bot; 2014 Aug; 65(16):4625-37. PubMed ID: 24520021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological relationships among physical, sensory, and morphological attributes of texture in tomato fruits.
    Chaïb J; Devaux MF; Grotte MG; Robini K; Causse M; Lahaye M; Marty I
    J Exp Bot; 2007; 58(8):1915-25. PubMed ID: 17452757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing of DELLA induces facultative parthenocarpy in tomato fruits.
    Martí C; Orzáez D; Ellul P; Moreno V; Carbonell J; Granell A
    Plant J; 2007 Dec; 52(5):865-76. PubMed ID: 17883372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of carbon dioxide enrichment on health-promoting compounds and organoleptic properties of tomato fruits grown in greenhouse.
    Zhang Z; Liu L; Zhang M; Zhang Y; Wang Q
    Food Chem; 2014 Jun; 153():157-63. PubMed ID: 24491715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The plant growth-promoting bacterium Kosakonia radicincitans improves fruit yield and quality of Solanum lycopersicum.
    Berger B; Baldermann S; Ruppel S
    J Sci Food Agric; 2017 Nov; 97(14):4865-4871. PubMed ID: 28382622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.