These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25010765)

  • 21. Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic.
    Caputi AA; Castelló ME; Aguilera P; Trujillo-Cenóz O
    J Physiol Paris; 2002; 96(5-6):493-505. PubMed ID: 14692497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From static electric images to electric flow: towards dynamic perceptual cues in active electroreception.
    Hofmann V; Sanguinetti-Scheck JI; Gómez-Sena L; Engelmann J
    J Physiol Paris; 2013; 107(1-2):95-106. PubMed ID: 22781955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From the intrinsic properties to the functional role of a neuron phenotype: an example from electric fish during signal trade-off.
    Nogueira J; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2380-92. PubMed ID: 23761463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contextual effects of small environments on the electric images of objects and their brain evoked responses in weakly electric fish.
    Pereira AC; Centurión V; Caputi AA
    J Exp Biol; 2005 Mar; 208(Pt 5):961-72. PubMed ID: 15755894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Convergent mosaic brain evolution is associated with the evolution of novel electrosensory systems in teleost fishes.
    Schumacher EL; Carlson BA
    Elife; 2022 Jun; 11():. PubMed ID: 35713403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Waveform diversity of electric organ discharges: the role of electric organ auto-excitability in Gymnotus spp.
    Rodríguez-Cattáneo A; Caputi AA
    J Exp Biol; 2009 Nov; 212(Pt 21):3478-89. PubMed ID: 19837890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coding conspecific identity and motion in the electric sense.
    Yu N; Hupé G; Garfinkle C; Lewis JE; Longtin A
    PLoS Comput Biol; 2012; 8(7):e1002564. PubMed ID: 22807662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ontogeny and evolution of electric organs in gymnotiform fish.
    Kirschbaum F; Schwassmann HO
    J Physiol Paris; 2008; 102(4-6):347-56. PubMed ID: 18984049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation.
    Fotowat H; Lee C; Jun JJ; Maler L
    Elife; 2019 Apr; 8():. PubMed ID: 30942169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Weakly electric fish learn both visual and electrosensory cues in a multisensory object discrimination task.
    Dangelmayer S; Benda J; Grewe J
    J Physiol Paris; 2016 Oct; 110(3 Pt B):182-189. PubMed ID: 27825970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chirping and asymmetric jamming avoidance responses in the electric fish
    Petzold JM; Alves-Gomes JA; Smith GT
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30012575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co-adaptation of electric organ discharges and chirps in South American ghost knifefishes (Apteronotidae).
    Petzold JM; Marsat G; Smith GT
    J Physiol Paris; 2016 Oct; 110(3 Pt B):200-215. PubMed ID: 27989653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish.
    Waddell JC; Rodríguez-Cattáneo A; Caputi AA; Crampton WGR
    J Physiol Paris; 2016 Oct; 110(3 Pt B):164-181. PubMed ID: 27794446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proximate and ultimate causes of signal diversity in the electric fish Gymnotus.
    Crampton WG; Rodríguez-Cattáneo A; Lovejoy NR; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2523-41. PubMed ID: 23761477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitivity to novel feedback at different phases of a gymnotid electric organ discharge.
    Schuster S; Otto N
    J Exp Biol; 2002 Nov; 205(Pt 21):3307-20. PubMed ID: 12324540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Postnatal brain development of the pulse type, weakly electric gymnotid fish Gymnotus omarorum.
    Iribarne L; Castelló ME
    J Physiol Paris; 2014; 108(2-3):47-60. PubMed ID: 24844821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electric organ discharge diversity in the genus Gymnotus: anatomo-functional groups and electrogenic mechanisms.
    Rodríguez-Cattáneo A; Aguilera P; Cilleruelo E; Crampton WG; Caputi AA
    J Exp Biol; 2013 Apr; 216(Pt 8):1501-15. PubMed ID: 23264494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A simple model of the electrosensory electromotor loop in Gymnotus omarorum.
    Caputi AA; Waddell JC; Aguilera PA
    Biosystems; 2023 Jan; 223():104800. PubMed ID: 36343760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes.
    Lavoué S; Miya M; Arnegard ME; Sullivan JP; Hopkins CD; Nishida M
    PLoS One; 2012; 7(5):e36287. PubMed ID: 22606250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.