BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 2501082)

  • 81. Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin.
    Aktories K; Weller U; Chhatwal GS
    FEBS Lett; 1987 Feb; 212(1):109-13. PubMed ID: 3100333
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Studies on the active-site structure of C3-like exoenzymes: involvement of glutamic acid in catalysis of ADP-ribosylation.
    Aktories K; Jung M; Böhmer J; Fritz G; Vandekerckhove J; Just I
    Biochimie; 1995; 77(5):326-32. PubMed ID: 8527485
    [TBL] [Abstract][Full Text] [Related]  

  • 83. ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin.
    Schering B; Bärmann M; Chhatwal GS; Geipel U; Aktories K
    Eur J Biochem; 1988 Jan; 171(1-2):225-9. PubMed ID: 2892681
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Probing the action of Clostridium difficile toxin B in Xenopus laevis oocytes.
    Just I; Richter HP; Prepens U; von Eichel-Streiber C; Aktories K
    J Cell Sci; 1994 Jun; 107 ( Pt 6)():1653-9. PubMed ID: 7962205
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Characterization of a neutralizing monoclonal antibody against botulinum ADP-ribosyltransferase, C3 exoenzyme.
    Kamata Y; Hoshi H; Choki H; Kozaki S
    J Vet Med Sci; 2002 Sep; 64(9):767-71. PubMed ID: 12399599
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Epidermal cell differentiation inhibitor ADP-ribosylates small GTP-binding proteins and induces hyperplasia of epidermis.
    Sugai M; Hashimoto K; Kikuchi A; Inoue S; Okumura H; Matsumoto K; Goto Y; Ohgai H; Moriishi K; Syuto B
    J Biol Chem; 1992 Feb; 267(4):2600-4. PubMed ID: 1733958
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Distinct biological activities of C3 and ADP-ribosyltransferase-deficient C3-E174Q.
    Rohrbeck A; Kolbe T; Hagemann S; Genth H; Just I
    FEBS J; 2012 Aug; 279(15):2657-71. PubMed ID: 22621765
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Synergistic activation of rat brain phospholipase D by ADP-ribosylation factor and rhoA p21, and its inhibition by Clostridium botulinum C3 exoenzyme.
    Kuribara H; Tago K; Yokozeki T; Sasaki T; Takai Y; Morii N; Narumiya S; Katada T; Kanaho Y
    J Biol Chem; 1995 Oct; 270(43):25667-71. PubMed ID: 7592744
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Effects of cytotoxic necrotizing factor 1 and lethal toxin on actin cytoskeleton and VE-cadherin localization in human endothelial cell monolayers.
    Vouret-Craviari V; Grall D; Flatau G; Pouysségur J; Boquet P; Van Obberghen-Schilling E
    Infect Immun; 1999 Jun; 67(6):3002-8. PubMed ID: 10338511
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile.
    Just I; Selzer J; von Eichel-Streiber C; Aktories K
    J Clin Invest; 1995 Mar; 95(3):1026-31. PubMed ID: 7883950
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in osteoclasts.
    Zhang D; Udagawa N; Nakamura I; Murakami H; Saito S; Yamasaki K; Shibasaki Y; Morii N; Narumiya S; Takahashi N
    J Cell Sci; 1995 Jun; 108 ( Pt 6)():2285-92. PubMed ID: 7673348
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Bacterial toxins block endothelial wound repair. Evidence that Rho GTPases control cytoskeletal rearrangements in migrating endothelial cells.
    Aepfelbacher M; Essler M; Huber E; Sugai M; Weber PC
    Arterioscler Thromb Vasc Biol; 1997 Sep; 17(9):1623-9. PubMed ID: 9327754
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Identification of rho as a substrate for botulinum toxin C3-catalyzed ADP-ribosylation.
    Quilliam LA; Lacal JC; Bokoch GM
    FEBS Lett; 1989 Apr; 247(2):221-6. PubMed ID: 2497029
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Characterization of the ADP-ribosylation of actin by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin.
    Aktories K; Geipel U; Wille M; Just I
    J Physiol (Paris); 1990; 84(4):262-6. PubMed ID: 2079662
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Purification and activity of the Rho ADP-ribosylating binary C2/C3 toxin.
    Haug G; Barth H; Aktories K
    Methods Enzymol; 2006; 406():117-27. PubMed ID: 16472654
    [TBL] [Abstract][Full Text] [Related]  

  • 96. ADP-ribosylation of actin causes increase in the rate of ATP exchange and inhibition of ATP hydrolysis.
    Geipel U; Just I; Schering B; Haas D; Aktories K
    Eur J Biochem; 1989 Jan; 179(1):229-32. PubMed ID: 2537199
    [TBL] [Abstract][Full Text] [Related]  

  • 97. ADP-ribosylation of specific membrane proteins in pheochromocytoma and primary-cultured brain cells by botulinum neurotoxins type C and D.
    Matsuoka I; Syoto B; Kurihara K; Kubo S
    FEBS Lett; 1987 Jun; 216(2):295-9. PubMed ID: 3108037
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Involvement of the GTP binding protein Rho in constitutive endocytosis in Xenopus laevis oocytes.
    Schmalzing G; Richter HP; Hansen A; Schwarz W; Just I; Aktories K
    J Cell Biol; 1995 Sep; 130(6):1319-32. PubMed ID: 7559755
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The intermediate filament protein vimentin is essential for axonotrophic effects of Clostridium botulinum C3 exoenzyme.
    Adolf A; Leondaritis G; Rohrbeck A; Eickholt BJ; Just I; Ahnert-Hilger G; Höltje M
    J Neurochem; 2016 Oct; 139(2):234-244. PubMed ID: 27419376
    [TBL] [Abstract][Full Text] [Related]  

  • 100. ADP-ribosylation of rho p21 inhibits lysophosphatidic acid-induced protein tyrosine phosphorylation and phosphatidylinositol 3-kinase activation in cultured Swiss 3T3 cells.
    Kumagai N; Morii N; Fujisawa K; Nemoto Y; Narumiya S
    J Biol Chem; 1993 Nov; 268(33):24535-8. PubMed ID: 8227009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.