These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25010909)

  • 1. Pyrophosphate selective fluorescent chemosensors: cascade recognition of nuclear stain mimicking DAPI.
    Goswami S; Das AK; Pakhira B; Basu Roy S; Maity AK; Saha P; Sarkar S
    Dalton Trans; 2014 Sep; 43(33):12689-97. PubMed ID: 25010909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrophosphate-selective fluorescent chemosensor based on 1,8-naphthalimide-DPA-Zn(II) complex and its application for cell imaging.
    Zhang JF; Kim S; Han JH; Lee SJ; Pradhan T; Cao QY; Lee SJ; Kang C; Kim JS
    Org Lett; 2011 Oct; 13(19):5294-7. PubMed ID: 21899305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined experimental and theoretical studies on selective sensing of zinc and pyrophosphate ions by rational design of compartmental chemosensor probe: Dual sensing behaviour via secondary recognition approach and cell imaging studies.
    Mawai K; Nathani S; Roy P; Singh UP; Ghosh K
    Dalton Trans; 2018 May; 47(18):6421-6434. PubMed ID: 29687810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spiropyran-based fluorescent anion probe and its application for urinary pyrophosphate detection.
    Shao N; Wang H; Gao X; Yang R; Chan W
    Anal Chem; 2010 Jun; 82(11):4628-36. PubMed ID: 20459115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrophosphate Recognition and Sensing in Water Using Bis[zinc(II)dipicolylamino]-Functionalized Peptides.
    Jolliffe KA
    Acc Chem Res; 2017 Sep; 50(9):2254-2263. PubMed ID: 28805368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Zn2+-specific turn-on fluorescent probe for ratiometric sensing of pyrophosphate in both water and blood serum.
    Wen J; Geng Z; Yin Y; Zhang Z; Wang Z
    Dalton Trans; 2011 Mar; 40(9):1984-9. PubMed ID: 21165508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly effective fluorescent and colorimetric sensors for pyrophosphate over H2PO4- in 100% aqueous solution.
    Jang YJ; Jun EJ; Lee YJ; Kim YS; Kim JS; Yoon J
    J Org Chem; 2005 Nov; 70(23):9603-6. PubMed ID: 16268641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomolar pyrophosphate detection and nucleus staining in living cells with simple terpyridine-Zn(II) complexes.
    Chao D; Ni S
    Sci Rep; 2016 May; 6():26477. PubMed ID: 27198968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imino-phenolic-pyridyl conjugates of calix[4]arene (L1 and L2) as primary fluorescence switch-on sensors for Zn2+ in solution and in HeLa cells and the recognition of pyrophosphate and ATP by [ZnL2].
    Pathak RK; Hinge VK; Rai A; Panda D; Rao CP
    Inorg Chem; 2012 May; 51(9):4994-5005. PubMed ID: 22519733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DAPI as a useful stain for nuclear quantitation.
    Tarnowski BI; Spinale FG; Nicholson JH
    Biotech Histochem; 1991; 66(6):297-302. PubMed ID: 1725854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular logic gate for the highly selective recognition of pyrophosphate with a hypocrellin A-Zn(II) complex.
    Zhao X; Huang CZ
    Analyst; 2010 Nov; 135(11):2853-7. PubMed ID: 20877861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zn(II) complex of terpyridine for the highly selective fluorescent recognition of pyrophosphate.
    Liang LJ; Zhao XJ; Huang CZ
    Analyst; 2012 Feb; 137(4):953-8. PubMed ID: 22183691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making pyrophosphate visible: the first precipitable and real-time fluorescent sensor for pyrophosphate in aqueous solution.
    Jiao SY; Li K; Wang X; Huang Z; Pu L; Yu XQ
    Analyst; 2015 Jan; 140(1):174-81. PubMed ID: 25383605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate.
    Gunnlaugsson T; Davis AP; O'Brien JE; Glynn M
    Org Biomol Chem; 2005 Jan; 3(1):48-56. PubMed ID: 15602598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetraphenylethene-pyridine salts as the first self-assembling chemosensor for pyrophosphate.
    Xu HR; Li K; Jiao SY; Pan SL; Zeng JR; Yu XQ
    Analyst; 2015 Jun; 140(12):4182-8. PubMed ID: 25913112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsically fluorescent and highly functionalized polymer nanoparticles as probes for the detection of zinc and pyrophosphate ions in rabbit serum samples.
    Zou W; Gong F; Chen X; Cao Z; Xia J; Gu T; Li Z
    Talanta; 2018 Oct; 188():203-209. PubMed ID: 30029365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrophosphate selective fluorescent probe and molecular flip-flop.
    Luxami V; Paul K; Jeong IH
    Dalton Trans; 2013 Mar; 42(11):3783-6. PubMed ID: 23348822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluorescent pyrophosphate sensor via excimer formation in water.
    Cho HK; Lee DH; Hong JI
    Chem Commun (Camb); 2005 Apr; (13):1690-2. PubMed ID: 15791300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phenanthroimidazole-based dizinc(II) complex as a fluorescent probe for the pyrophosphate ion as generated in polymerase chain reactions and pyrosequencing.
    Anbu S; Kamalraj S; Paul A; Jayabaskaran C; Pombeiro AJ
    Dalton Trans; 2015 Mar; 44(9):3930-3. PubMed ID: 25623848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly selective recognition and fluorescence imaging of adenosine polyphosphates in aqueous solution.
    Zhang M; Ma WJ; He CT; Jiang L; Lu TB
    Inorg Chem; 2013 May; 52(9):4873-9. PubMed ID: 23560560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.