BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 25011015)

  • 1. Deformation behavior of metastable β-type Ti-25Nb-2Mo-4Sn alloy for biomedical applications.
    Guo S; Meng QK; Cheng XN; Zhao XQ
    J Mech Behav Biomed Mater; 2014 Oct; 38():26-32. PubMed ID: 25011015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy.
    Elmay W; Prima F; Gloriant T; Bolle B; Zhong Y; Patoor E; Laheurte P
    J Mech Behav Biomed Mater; 2013 Feb; 18():47-56. PubMed ID: 23246554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the microstructure and mechanical properties during fabrication of mini-tubes from a biomedical β-titanium alloy.
    Zhang Y; Kent D; Wang G; St John D; Dargusch M
    J Mech Behav Biomed Mater; 2015 Feb; 42():207-18. PubMed ID: 25498294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation.
    Li SJ; Cui TC; Hao YL; Yang R
    Acta Biomater; 2008 Mar; 4(2):305-17. PubMed ID: 18006397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications.
    Xiong J; Li Y; Wang X; Hodgson P; Wen C
    Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications.
    Hao YL; Li SJ; Sun SY; Zheng CY; Yang R
    Acta Biomater; 2007 Mar; 3(2):277-86. PubMed ID: 17234466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications.
    Sheremetyev V; Brailovski V; Prokoshkin S; Inaekyan K; Dubinskiy S
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():935-44. PubMed ID: 26478389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.
    Zhao X; Niinomi M; Nakai M
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.
    Zhang DC; Yang S; Wei M; Mao YF; Tan CG; Lin JG
    J Mech Behav Biomed Mater; 2012 Sep; 13():156-65. PubMed ID: 22842657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of swaging on Young׳s modulus of β Ti-33.6Nb-4Sn alloy.
    Hanada S; Masahashi N; Jung TK; Miyake M; Sato YS; Kokawa H
    J Mech Behav Biomed Mater; 2014 Apr; 32():310-320. PubMed ID: 24378733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique.
    Kent D; Wang G; Yu Z; Ma X; Dargusch M
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):405-16. PubMed ID: 21316628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superelasticity Evaluation of the Biocompatible Ti-17Nb-6Ta Alloy.
    Keshtta A; Gepreel MA
    J Healthc Eng; 2019; 2019():8353409. PubMed ID: 30728927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of phase transformations on dynamical elastic modulus and anelasticity of beta Ti-Nb-Fe alloys for biomedical applications.
    Chaves JM; Florêncio O; Silva PS; Marques PW; Afonso CR
    J Mech Behav Biomed Mater; 2015 Jun; 46():184-96. PubMed ID: 25796065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti-26Nb and Ti-20Nb-6Zr (at.%) alloys.
    Sun F; Hao YL; Nowak S; Gloriant T; Laheurte P; Prima F
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1864-72. PubMed ID: 22098885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation mechanism and mechanical properties of a thermomechanically processed β Ti-28Nb-35.4Zr alloy.
    Ozan S; Lin J; Li Y; Zhang Y; Munir K; Jiang H; Wen C
    J Mech Behav Biomed Mater; 2018 Feb; 78():224-234. PubMed ID: 29175491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys.
    Ijaz MF; Kim HY; Hosoda H; Miyazaki S
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():11-20. PubMed ID: 25579891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents.
    Tian Y; Yu Z; Ong CY; Kent D; Wang G
    J Mech Behav Biomed Mater; 2015 May; 45():132-41. PubMed ID: 25706668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys.
    Ramarolahy A; Castany P; Prima F; Laheurte P; Péron I; Gloriant T
    J Mech Behav Biomed Mater; 2012 May; 9():83-90. PubMed ID: 22498286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Nb on the β→α″ martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys.
    Ehtemam-Haghighi S; Liu Y; Cao G; Zhang LC
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():503-510. PubMed ID: 26706557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superelastic behavior of a β-type titanium alloy.
    Zhang DC; Mao YF; Yan M; Li JJ; Su EL; Li YL; Tan SW; Lin JG
    J Mech Behav Biomed Mater; 2013 Apr; 20():29-35. PubMed ID: 23455161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.