These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 25011599)
1. Optimization of laccase production by two strains of Ganoderma lucidum using phenolic and metallic inducers. Kuhar F; Papinutti L Rev Argent Microbiol; 2014; 46(2):144-9. PubMed ID: 25011599 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of laccase production by Ganoderma lucidum in submerged and solid-state fermentation using different inducers. Rodrigues EM; Karp SG; Malucelli LC; Helm CV; Alvarez TM J Basic Microbiol; 2019 Aug; 59(8):784-791. PubMed ID: 31259434 [TBL] [Abstract][Full Text] [Related]
3. Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. Murugesan K; Yang IH; Kim YM; Jeon JR; Chang YS Appl Microbiol Biotechnol; 2009 Feb; 82(2):341-50. PubMed ID: 19130052 [TBL] [Abstract][Full Text] [Related]
4. Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds. de Souza CG; Tychanowicz GK; de Souza DF; Peralta RM J Basic Microbiol; 2004; 44(2):129-36. PubMed ID: 15069672 [TBL] [Abstract][Full Text] [Related]
5. Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum. Kuhar F; Papinutti L J Environ Manage; 2013 Jul; 124():1-7. PubMed ID: 23583918 [TBL] [Abstract][Full Text] [Related]
6. Enhanced laccase production in white-rot fungus Rigidoporus lignosus by the addition of selected phenolic and aromatic compounds. Cambria MT; Ragusa S; Calabrese V; Cambria A Appl Biochem Biotechnol; 2011 Feb; 163(3):415-22. PubMed ID: 20711819 [TBL] [Abstract][Full Text] [Related]
7. Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Kaur H; Kapoor S; Kaur G Environ Monit Assess; 2016 Oct; 188(10):588. PubMed ID: 27670886 [TBL] [Abstract][Full Text] [Related]
8. Improvement of laccase activity by silencing PacC in Ganoderma lucidum. Zhu J; Song S; Lian L; Shi L; Ren A; Zhao M World J Microbiol Biotechnol; 2022 Jan; 38(2):32. PubMed ID: 34989903 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of diuron tolerance and biotransformation by the white-rot fungus Ganoderma lucidum. Coelho-Moreira JDS; Brugnari T; Sá-Nakanishi AB; Castoldi R; de Souza CGM; Bracht A; Peralta RM Fungal Biol; 2018 Jun; 122(6):471-478. PubMed ID: 29801791 [TBL] [Abstract][Full Text] [Related]
10. De novo transcriptome assembly and protein profiling of copper-induced lignocellulolytic fungus Ganoderma lucidum MDU-7 reveals genes involved in lignocellulose degradation and terpenoid biosynthetic pathways. Jain KK; Kumar A; Shankar A; Pandey D; Chaudhary B; Sharma KK Genomics; 2020 Jan; 112(1):184-198. PubMed ID: 30695716 [TBL] [Abstract][Full Text] [Related]
11. Induction of laccase activity in the white rot fungus Pleurotus ostreatus using water polluted with wheat straw extracts. Parenti A; Muguerza E; Iroz AR; Omarini A; Conde E; Alfaro M; Castanera R; Santoyo F; Ramírez L; Pisabarro AG Bioresour Technol; 2013 Apr; 133():142-9. PubMed ID: 23425584 [TBL] [Abstract][Full Text] [Related]
12. Effect of Ferulic Acid, a Phenolic Inducer of Fungal Laccase, on 26S Proteasome Activities In Vitro. Swatek A; Staszczak M Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32252291 [TBL] [Abstract][Full Text] [Related]
13. Isolation and Physicochemical Characterization of Laccase from Shrestha P; Joshi B; Joshi J; Malla R; Sreerama L Biomed Res Int; 2016; 2016():3238909. PubMed ID: 27822471 [TBL] [Abstract][Full Text] [Related]
14. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation. Sitarz AK; Mikkelsen JD; Højrup P; Meyer AS Enzyme Microb Technol; 2013 Dec; 53(6-7):378-85. PubMed ID: 24315640 [TBL] [Abstract][Full Text] [Related]
15. Study of Yuliana T; Putri NZ; Komara DZ; Mardawati E; Lanti I; Rahimah S Pak J Biol Sci; 2020 Jan; 23(8):1060-1065. PubMed ID: 32700857 [TBL] [Abstract][Full Text] [Related]
16. Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata. Mäkelä MR; Lundell T; Hatakka A; Hildén K Fungal Biol; 2013 Jan; 117(1):62-70. PubMed ID: 23332834 [TBL] [Abstract][Full Text] [Related]
17. [Combined effect of copper and initial pH of the culture on production of laccase and manganese peroxidase by Stereum hirsutum (Willd) Pers]. Mouso N; Papinutti L; Forchiassin F Rev Iberoam Micol; 2003 Dec; 20(4):176-8. PubMed ID: 15456359 [TBL] [Abstract][Full Text] [Related]
18. The effect of carbon source succession on laccase activity in the co-culture process of Ganoderma lucidum and a yeast. Li P; Wang H; Liu G; Li X; Yao J Enzyme Microb Technol; 2011 Jan; 48(1):1-6. PubMed ID: 22112763 [TBL] [Abstract][Full Text] [Related]
19. Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. Murugesan K; Kim YM; Jeon JR; Chang YS J Hazard Mater; 2009 Aug; 168(1):523-9. PubMed ID: 19356850 [TBL] [Abstract][Full Text] [Related]
20. Induction of Laccase, Lignin Peroxidase and Manganese Peroxidase Activities in White-Rot Fungi Using Copper Complexes. Vrsanska M; Voberkova S; Langer V; Palovcikova D; Moulick A; Adam V; Kopel P Molecules; 2016 Nov; 21(11):. PubMed ID: 27869681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]