These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 25011622)
1. Computational simulations of flow dynamics and blood damage through a bileaflet mechanical heart valve scaled to pediatric size and flow. Yun BM; McElhinney DB; Arjunon S; Mirabella L; Aidun CK; Yoganathan AP J Biomech; 2014 Sep; 47(12):3169-77. PubMed ID: 25011622 [TBL] [Abstract][Full Text] [Related]
2. Blood damage through a bileaflet mechanical heart valve: a quantitative computational study using a multiscale suspension flow solver. Min Yun B; Aidun CK; Yoganathan AP J Biomech Eng; 2014 Oct; 136(10):101009. PubMed ID: 25070372 [TBL] [Abstract][Full Text] [Related]
3. A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Yun BM; Wu J; Simon HA; Arjunon S; Sotiropoulos F; Aidun CK; Yoganathan AP Ann Biomed Eng; 2012 Jul; 40(7):1468-85. PubMed ID: 22215278 [TBL] [Abstract][Full Text] [Related]
4. A novel computational model for the hemodynamics of bileaflet mechanical valves in the opening phase. Jahandardoost M; Fradet G; Mohammadi H Proc Inst Mech Eng H; 2015 Mar; 229(3):232-44. PubMed ID: 25833999 [TBL] [Abstract][Full Text] [Related]
5. Pressure and flow fields in the hinge region of bileaflet mechanical heart valves. Gao ZB; Hosein N; Dai FF; Hwang NH J Heart Valve Dis; 1999 Mar; 8(2):197-205. PubMed ID: 10224581 [TBL] [Abstract][Full Text] [Related]
6. Micro particle image velocimetry measurements of steady diastolic leakage flow in the hinge of a St. Jude Medical® regent™ mechanical heart valve. Jun BH; Saikrishnan N; Yoganathan AP Ann Biomed Eng; 2014 Mar; 42(3):526-40. PubMed ID: 24085344 [TBL] [Abstract][Full Text] [Related]
7. Numerical investigation of the effects of channel geometry on platelet activation and blood damage. Wu J; Yun BM; Fallon AM; Hanson SR; Aidun CK; Yoganathan AP Ann Biomed Eng; 2011 Feb; 39(2):897-910. PubMed ID: 20976558 [TBL] [Abstract][Full Text] [Related]
8. Effect of hinge gap width of a St. Jude medical bileaflet mechanical heart valve on blood damage potential--an in vitro micro particle image velocimetry study. Jun BH; Saikrishnan N; Arjunon S; Yun BM; Yoganathan AP J Biomech Eng; 2014 Sep; 136(9):091008. PubMed ID: 24976188 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. Dumont K; Vierendeels J; Kaminsky R; van Nooten G; Verdonck P; Bluestein D J Biomech Eng; 2007 Aug; 129(4):558-65. PubMed ID: 17655477 [TBL] [Abstract][Full Text] [Related]
10. Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves. Simon HA; Ge L; Sotiropoulos F; Yoganathan AP Ann Biomed Eng; 2010 Nov; 38(11):3295-310. PubMed ID: 20571852 [TBL] [Abstract][Full Text] [Related]
11. Effect of heart rate on the hemodynamics of bileaflet mechanical heart valves' prostheses (St. Jude Medical) in the aortic position and in the opening phase: A computational study. Jahandardoost M; Fradet G; Mohammadi H Proc Inst Mech Eng H; 2016 Mar; 230(3):175-90. PubMed ID: 26786673 [TBL] [Abstract][Full Text] [Related]
12. Dynamic particle image velocimetry study of the aortic flow field of contemporary mechanical bileaflet prostheses. Akutsu T; Saito J; Imai R; Suzuki T; Cao XD J Artif Organs; 2008; 11(2):75-90. PubMed ID: 18604612 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulation of opening process in a bileaflet mechanical heart valve under pulsatile flow condition. Shi Y; Zhao Y; Yeo TJ; Hwang NH J Heart Valve Dis; 2003 Mar; 12(2):245-55. PubMed ID: 12701798 [TBL] [Abstract][Full Text] [Related]
15. Microflow fields in the hinge region of the CarboMedics bileaflet mechanical heart valve design. Leo HL; He Z; Ellis JT; Yoganathan AP J Thorac Cardiovasc Surg; 2002 Sep; 124(3):561-74. PubMed ID: 12202873 [TBL] [Abstract][Full Text] [Related]
16. Cavitation Suppression of Bileaflet Mechanical Heart Valves. Qian JY; Gao ZX; Li WQ; Jin ZJ Cardiovasc Eng Technol; 2020 Dec; 11(6):783-794. PubMed ID: 32918244 [TBL] [Abstract][Full Text] [Related]
17. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ge L; Dasi LP; Sotiropoulos F; Yoganathan AP Ann Biomed Eng; 2008 Feb; 36(2):276-97. PubMed ID: 18049902 [TBL] [Abstract][Full Text] [Related]
18. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves. Ellis JT; Healy TM; Fontaine AA; Weston MW; Jarret CA; Saxena R; Yoganathan AP J Heart Valve Dis; 1996 Nov; 5(6):600-6. PubMed ID: 8953437 [TBL] [Abstract][Full Text] [Related]
19. The Apex bileaflet mechanical heart valve. Mohammadi H; Bhullar A J Med Eng Technol; 2021 Jan; 45(1):41-51. PubMed ID: 33448912 [TBL] [Abstract][Full Text] [Related]
20. Simulation of the three-dimensional hinge flow fields of a bileaflet mechanical heart valve under aortic conditions. Simon HA; Ge L; Borazjani I; Sotiropoulos F; Yoganathan AP Ann Biomed Eng; 2010 Mar; 38(3):841-53. PubMed ID: 19960368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]