BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25011932)

  • 1. Cell migration on planar and three-dimensional matrices: a hydrogel-based perspective.
    Vu LT; Jain G; Veres BD; Rajagopalan P
    Tissue Eng Part B Rev; 2015 Feb; 21(1):67-74. PubMed ID: 25011932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guidance of cell migration by substrate dimension.
    Chang SS; Guo WH; Kim Y; Wang YL
    Biophys J; 2013 Jan; 104(2):313-21. PubMed ID: 23442853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering.
    Pok S; Myers JD; Madihally SV; Jacot JG
    Acta Biomater; 2013 Mar; 9(3):5630-42. PubMed ID: 23128158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells.
    Gwon K; Kim E; Tae G
    Acta Biomater; 2017 Feb; 49():284-295. PubMed ID: 27919839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering.
    Fan C; Wang DA
    Tissue Eng Part B Rev; 2017 Oct; 23(5):451-461. PubMed ID: 28067115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-matrix and cell-cell interactions of human gingival fibroblasts on three-dimensional nanofibrous gelatin scaffolds.
    Sachar A; Strom TA; San Miguel S; Serrano MJ; Svoboda KK; Liu X
    J Tissue Eng Regen Med; 2014 Nov; 8(11):862-73. PubMed ID: 22888047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofabrication of 3D Alginate-Based Hydrogel for Cancer Research: Comparison of Cell Spreading, Viability, and Adhesion Characteristics of Colorectal HCT116 Tumor Cells.
    Ivanovska J; Zehnder T; Lennert P; Sarker B; Boccaccini AR; Hartmann A; Schneider-Stock R; Detsch R
    Tissue Eng Part C Methods; 2016 Jul; 22(7):708-15. PubMed ID: 27269631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designer self-assembling peptide nanofiber scaffolds containing link protein N-terminal peptide induce chondrogenesis of rabbit bone marrow stem cells.
    Wang B; Sun C; Shao Z; Yang S; Che B; Wu Q; Liu J
    Biomed Res Int; 2014; 2014():421954. PubMed ID: 25243141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.
    Brunelle AR; Horner CB; Low K; Ico G; Nam J
    Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of microfabrication and hydrogel engineering for micro-organs on chips.
    Verhulsel M; Vignes M; Descroix S; Malaquin L; Vignjevic DM; Viovy JL
    Biomaterials; 2014 Feb; 35(6):1816-32. PubMed ID: 24314552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional porous biodegradable polymeric scaffolds fabricated with biodegradable hydrogel porogens.
    Kim J; Yaszemski MJ; Lu L
    Tissue Eng Part C Methods; 2009 Dec; 15(4):583-94. PubMed ID: 19216632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterials that promote cell-cell interactions enhance the paracrine function of MSCs.
    Qazi TH; Mooney DJ; Duda GN; Geissler S
    Biomaterials; 2017 Sep; 140():103-114. PubMed ID: 28644976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring dynamic cell-material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels.
    Schultz KM; Kyburz KA; Anseth KS
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):E3757-64. PubMed ID: 26150508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells.
    Choi MY; Kim JT; Lee WJ; Lee Y; Park KM; Yang YI; Park KD
    Acta Biomater; 2017 Mar; 50():234-248. PubMed ID: 28063988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Nanotopography, Heparin Hydrogel Microstructures, and Encapsulated Fibroblasts on Phenotype of Primary Hepatocytes.
    You J; Raghunathan VK; Son KJ; Patel D; Haque A; Murphy CJ; Revzin A
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12299-308. PubMed ID: 25247391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.