These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 25012259)
1. Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase. Liu P; Zhang H; Lv M; Hu M; Li Z; Gao C; Xu P; Ma C Sci Rep; 2014 Jul; 4():5657. PubMed ID: 25012259 [TBL] [Abstract][Full Text] [Related]
2. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Rohles CM; Gießelmann G; Kohlstedt M; Wittmann C; Becker J Microb Cell Fact; 2016 Sep; 15(1):154. PubMed ID: 27618862 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli. Li Z; Xu J; Jiang T; Ge Y; Liu P; Zhang M; Su Z; Gao C; Ma C; Xu P Sci Rep; 2016 Aug; 6():30884. PubMed ID: 27510748 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Park SJ; Kim EY; Noh W; Park HM; Oh YH; Lee SH; Song BK; Jegal J; Lee SY Metab Eng; 2013 Mar; 16():42-7. PubMed ID: 23246520 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386 [TBL] [Abstract][Full Text] [Related]
6. High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis. Park SJ; Oh YH; Noh W; Kim HY; Shin JH; Lee EG; Lee S; David Y; Baylon MG; Song BK; Jegal J; Lee SY; Lee SH Biotechnol J; 2014 Oct; 9(10):1322-8. PubMed ID: 25124937 [TBL] [Abstract][Full Text] [Related]
7. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Adkins J; Jordan J; Nielsen DR Biotechnol Bioeng; 2013 Jun; 110(6):1726-34. PubMed ID: 23296991 [TBL] [Abstract][Full Text] [Related]
8. Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440. Revelles O; Espinosa-Urgel M; Fuhrer T; Sauer U; Ramos JL J Bacteriol; 2005 Nov; 187(21):7500-10. PubMed ID: 16237033 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Kim HT; Khang TU; Baritugo KA; Hyun SM; Kang KH; Jung SH; Song BK; Park K; Oh MK; Kim GB; Kim HU; Lee SY; Park SJ; Joo JC Metab Eng; 2019 Jan; 51():99-109. PubMed ID: 30144560 [TBL] [Abstract][Full Text] [Related]
10. Increased glutarate production by blocking the glutaryl-CoA dehydrogenation pathway and a catabolic pathway involving L-2-hydroxyglutarate. Zhang M; Gao C; Guo X; Guo S; Kang Z; Xiao D; Yan J; Tao F; Zhang W; Dong W; Liu P; Yang C; Ma C; Xu P Nat Commun; 2018 May; 9(1):2114. PubMed ID: 29844506 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Heterologous Biosynthetic Pathways for Methanol-Based 5-Aminovalerate Production by Thermophilic Brito LF; Irla M; Nærdal I; Le SB; Delépine B; Heux S; Brautaset T Front Bioeng Biotechnol; 2021; 9():686319. PubMed ID: 34262896 [TBL] [Abstract][Full Text] [Related]
12. Systems metabolic engineering of Corynebacterium glutamicum eliminates all by-products for selective and high-yield production of the platform chemical 5-aminovalerate. Rohles C; Pauli S; Gießelmann G; Kohlstedt M; Becker J; Wittmann C Metab Eng; 2022 Sep; 73():168-181. PubMed ID: 35917915 [TBL] [Abstract][Full Text] [Related]
13. Coproduction of 5-Aminovalerate and δ-Valerolactam for the Synthesis of Nylon 5 From L-Lysine in Cheng J; Tu W; Luo Z; Liang L; Gou X; Wang X; Liu C; Zhang G Front Bioeng Biotechnol; 2021; 9():726126. PubMed ID: 34604186 [TBL] [Abstract][Full Text] [Related]
14. Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing Han T; Kim GB; Lee SY Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30328-30334. PubMed ID: 33199604 [TBL] [Abstract][Full Text] [Related]
15. Glutarate semialdehyde dehydrogenase of Pseudomonas. Purification, properties, and relation to L-lysine catabolism. Chang YF; Adams E J Biol Chem; 1977 Nov; 252(22):7979-86. PubMed ID: 914857 [TBL] [Abstract][Full Text] [Related]
16. Efficient whole-cell catalysis for 5-aminovalerate production from L-lysine by using engineered Escherichia coli with ethanol pretreatment. Cheng J; Luo Q; Duan H; Peng H; Zhang Y; Hu J; Lu Y Sci Rep; 2020 Jan; 10(1):990. PubMed ID: 31969619 [TBL] [Abstract][Full Text] [Related]
17. D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism. Chang YF; Adams E J Bacteriol; 1974 Feb; 117(2):753-64. PubMed ID: 4359655 [TBL] [Abstract][Full Text] [Related]
18. Widespread bacterial lysine degradation proceeding via glutarate and L-2-hydroxyglutarate. Knorr S; Sinn M; Galetskiy D; Williams RM; Wang C; Müller N; Mayans O; Schleheck D; Hartig JS Nat Commun; 2018 Nov; 9(1):5071. PubMed ID: 30498244 [TBL] [Abstract][Full Text] [Related]
19. Catabolism of L-lysine by Pseudomonas aeruginosa. Fothergill JC; Guest JR J Gen Microbiol; 1977 Mar; 99(1):139-55. PubMed ID: 405455 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Escherichia coli for polyamides monomer δ-valerolactam production from feedstock lysine. Xu Y; Zhou D; Luo R; Yang X; Wang B; Xiong X; Shen W; Wang D; Wang Q Appl Microbiol Biotechnol; 2020 Dec; 104(23):9965-9977. PubMed ID: 33064187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]