BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 25012465)

  • 1. Performance assessment of a brain-computer interface driven hand orthosis.
    King CE; Dave KR; Wang PT; Mizuta M; Reinkensmeyer DJ; Do AH; Moromugi S; Nenadic Z
    Ann Biomed Eng; 2014 Oct; 42(10):2095-105. PubMed ID: 25012465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive brain-computer interface driven hand orthosis.
    King CE; Wang PT; Mizuta M; Reinkensmeyer DJ; Do AH; Moromugi S; Nenadic Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5786-9. PubMed ID: 22255655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.
    Rohm M; Schneiders M; Müller C; Kreilinger A; Kaiser V; Müller-Putz GR; Rupp R
    Artif Intell Med; 2013 Oct; 59(2):133-42. PubMed ID: 24064256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation.
    Chowdhury A; Raza H; Meena YK; Dutta A; Prasad G
    J Neurosci Methods; 2019 Jan; 312():1-11. PubMed ID: 30452976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI.
    Pfurtscheller G; Solis-Escalante T; Ortner R; Linortner P; Müller-Putz GR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):409-14. PubMed ID: 20144923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contralesional Brain-Computer Interface Control of a Powered Exoskeleton for Motor Recovery in Chronic Stroke Survivors.
    Bundy DT; Souders L; Baranyai K; Leonard L; Schalk G; Coker R; Moran DW; Huskey T; Leuthardt EC
    Stroke; 2017 Jul; 48(7):1908-1915. PubMed ID: 28550098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.
    Ramos-Murguialday A; Schürholz M; Caggiano V; Wildgruber M; Caria A; Hammer EM; Halder S; Birbaumer N
    PLoS One; 2012; 7(10):e47048. PubMed ID: 23071707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-computer interface controlled functional electrical stimulation system for ankle movement.
    Do AH; Wang PT; King CE; Abiri A; Nenadic Z
    J Neuroeng Rehabil; 2011 Aug; 8():49. PubMed ID: 21867567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor Imagery-Based Brain-Computer Interface Coupled to a Robotic Hand Orthosis Aimed for Neurorehabilitation of Stroke Patients.
    Cantillo-Negrete J; Carino-Escobar RI; Carrillo-Mora P; Elias-Vinas D; Gutierrez-Martinez J
    J Healthc Eng; 2018; 2018():1624637. PubMed ID: 29849992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IpsiHand Bravo: an improved EEG-based brain-computer interface for hand motor control rehabilitation.
    Holmes CD; Wronkiewicz M; Somers T; Liu J; Russell E; Kim D; Rhoades C; Dunkley J; Bundy D; Galboa E; Leuthardt E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1749-52. PubMed ID: 23366248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An SSVEP BCI to control a hand orthosis for persons with tetraplegia.
    Ortner R; Allison BZ; Korisek G; Gaggl H; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):1-5. PubMed ID: 20875978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-computer interface controlled robotic gait orthosis.
    Do AH; Wang PT; King CE; Chun SN; Nenadic Z
    J Neuroeng Rehabil; 2013 Dec; 10():111. PubMed ID: 24321081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mental activity hand orthosis control using the EEG: a case study].
    Pfurtscheller G; Müller G; Korisek G
    Rehabilitation (Stuttg); 2002 Feb; 41(1):48-52. PubMed ID: 11830792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-paced brain-computer interface control of ambulation in a virtual reality environment.
    Wang PT; King CE; Chui LA; Do AH; Nenadic Z
    J Neural Eng; 2012 Oct; 9(5):056016. PubMed ID: 23010771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurophysiological predictor of SMR-based BCI performance.
    Blankertz B; Sannelli C; Halder S; Hammer EM; Kübler A; Müller KR; Curio G; Dickhaus T
    Neuroimage; 2010 Jul; 51(4):1303-9. PubMed ID: 20303409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke.
    Buch E; Weber C; Cohen LG; Braun C; Dimyan MA; Ard T; Mellinger J; Caria A; Soekadar S; Fourkas A; Birbaumer N
    Stroke; 2008 Mar; 39(3):910-7. PubMed ID: 18258825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of the progression and future implications of brain-computer interface therapies for restoration of distal upper extremity motor function after stroke.
    Remsik A; Young B; Vermilyea R; Kiekhoefer L; Abrams J; Evander Elmore S; Schultz P; Nair V; Edwards D; Williams J; Prabhakaran V
    Expert Rev Med Devices; 2016 May; 13(5):445-54. PubMed ID: 27112213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional recovery in upper limb function in stroke survivors by using brain-computer interface A single case A-B-A-B design.
    Ono T; Mukaino M; Ushiba J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():265-8. PubMed ID: 24109675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.