These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 25012513)
1. Determination of internal energy distributions of laser electrospray mass spectrometry using thermometer ions and other biomolecules. Flanigan PM; Shi F; Perez JJ; Karki S; Pfeiffer C; Schafmeister C; Levis RJ J Am Soc Mass Spectrom; 2014 Sep; 25(9):1572-82. PubMed ID: 25012513 [TBL] [Abstract][Full Text] [Related]
2. Internal energy distribution in electrospray ionization. Naban-Maillet J; Lesage D; Bossée A; Gimbert Y; Sztáray J; Vékey K; Tabet JC J Mass Spectrom; 2005 Jan; 40(1):1-8. PubMed ID: 15584007 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the internal energy deposition of Venturi-assisted electrospray ionization and a Venturi-assisted array of micromachined ultrasonic electrosprays (AMUSE). Hampton CY; Silvestri CJ; Forbes TP; Varady MJ; Meacham JM; Fedorov AG; Degertekin FL; Fernández FM J Am Soc Mass Spectrom; 2008 Sep; 19(9):1320-9. PubMed ID: 18650100 [TBL] [Abstract][Full Text] [Related]
4. Internal energy distribution of peptides in electrospray ionization : ESI and collision-induced dissociation spectra calculation. Pak A; Lesage D; Gimbert Y; Vékey K; Tabet JC J Mass Spectrom; 2008 Apr; 43(4):447-55. PubMed ID: 17975856 [TBL] [Abstract][Full Text] [Related]
5. Surface acoustic wave nebulization produces ions with lower internal energy than electrospray ionization. Huang Y; Yoon SH; Heron SR; Masselon CD; Edgar JS; Tureček F; Goodlett DR J Am Soc Mass Spectrom; 2012 Jun; 23(6):1062-70. PubMed ID: 22476889 [TBL] [Abstract][Full Text] [Related]
6. Internal energy deposition for low energy, femtosecond laser vaporization and nanospray post-ionization mass spectrometry using thermometer ions. Flanigan PM; Shi F; Archer JJ; Levis RJ J Am Soc Mass Spectrom; 2015 May; 26(5):716-24. PubMed ID: 25724375 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the Internal Energy of Ions Produced by Electrospray Ionization Using Substituted Benzyl Ammonium Thermometer Ions. Asakawa D; Saikusa K J Am Soc Mass Spectrom; 2022 Aug; 33(8):1548-1554. PubMed ID: 35853154 [TBL] [Abstract][Full Text] [Related]
8. Fragmentation of benzylpyridinium "thermometer" ions and its effect on the accuracy of internal energy calibration. Barylyuk KV; Chingin K; Balabin RM; Zenobi R J Am Soc Mass Spectrom; 2010 Jan; 21(1):172-7. PubMed ID: 19879774 [TBL] [Abstract][Full Text] [Related]
9. Internal Energy Deposition in Infrared Matrix-Assisted Laser Desorption Electrospray Ionization With and Without the Use of Ice as a Matrix. Tu A; Muddiman DC J Am Soc Mass Spectrom; 2019 Nov; 30(11):2380-2391. PubMed ID: 31502226 [TBL] [Abstract][Full Text] [Related]
10. Dual-source mass spectrometer with MALDI-LIT-ESI configuration. Smith SA; Blake TA; Ifa DR; Cooks RG; Ouyang Z J Proteome Res; 2007 Feb; 6(2):837-45. PubMed ID: 17269740 [TBL] [Abstract][Full Text] [Related]
11. Manipulating internal energy of protonated biomolecules in electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Guo X; Duursma MC; Kistemaker PG; Nibbering NM; Vekey K; Drahos L; Heeren RM J Mass Spectrom; 2003 Jun; 38(6):597-606. PubMed ID: 12827629 [TBL] [Abstract][Full Text] [Related]
12. Thermometer ions for matrix-enhanced laser desorption/ionization internal energy calibration. Greisch JF; Gabelica V; Remacle F; De Pauw E Rapid Commun Mass Spectrom; 2003; 17(16):1847-54. PubMed ID: 12876684 [TBL] [Abstract][Full Text] [Related]
13. Ambient Molecular Analysis of Biological Tissue Using Low-Energy, Femtosecond Laser Vaporization and Nanospray Postionization Mass Spectrometry. Shi F; Flanigan PM; Archer JJ; Levis RJ J Am Soc Mass Spectrom; 2016 Mar; 27(3):542-51. PubMed ID: 26667178 [TBL] [Abstract][Full Text] [Related]
14. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry. Karki S; Shi F; Archer JJ; Sistani H; Levis RJ J Am Soc Mass Spectrom; 2018 May; 29(5):1002-1011. PubMed ID: 29520709 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the effects of ionization mechanism, analyte concentration, and ion "cool-times" on the internal energies of peptide ions produced by electrospray and atmospheric pressure matrix-assisted laser desorption ionization. Konn DO; Murrell J; Despeyroux D; Gaskell SJ J Am Soc Mass Spectrom; 2005 May; 16(5):743-51. PubMed ID: 15862775 [TBL] [Abstract][Full Text] [Related]
16. Quantitative measurements of small molecule mixtures using laser electrospray mass spectrometry. Flanigan PM; Perez JJ; Karki S; Levis RJ Anal Chem; 2013 Apr; 85(7):3629-37. PubMed ID: 23452308 [TBL] [Abstract][Full Text] [Related]
17. Development of a tandem time-of-flight mass spectrometer with an electrospray ionization ion source. Nagao H; Shimma S; Hayakawa S; Awazu K; Toyoda M J Mass Spectrom; 2010 Aug; 45(8):937-43. PubMed ID: 20641007 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture/Electrospray Ionization. Cahill JF; Kertesz V; Ovchinnikova OS; Van Berkel GJ J Am Soc Mass Spectrom; 2015 Sep; 26(9):1462-8. PubMed ID: 26115968 [TBL] [Abstract][Full Text] [Related]
19. Ion internal energy distributions validate the charge residue model for small molecule ion formation by spray methods. Touboul D; Jecklin MC; Zenobi R Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1062-8. PubMed ID: 18327854 [TBL] [Abstract][Full Text] [Related]
20. Measuring the internal energies of species emitted from hypervelocity nanoprojectile impacts on surfaces using recalibrated benzylpyridinium probe ions. DeBord JD; Verkhoturov SV; Perez LM; North SW; Hall MB; Schweikert EA J Chem Phys; 2013 Jun; 138(21):214301. PubMed ID: 23758365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]