BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25012742)

  • 1. Systematic review of preclinical and clinical studies on scaffold use in knee ligament regeneration.
    Caudwell M; Crowley C; Khan WS; Wong JM
    Curr Stem Cell Res Ther; 2015; 10(1):11-8. PubMed ID: 25012742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preclinical Studies on Biomaterial Scaffold use in Knee Ligament Regeneration: A Systematic Review.
    Archer DE; Mafi R; Mafi P; Khan WS
    Curr Stem Cell Res Ther; 2018; 13(8):691-701. PubMed ID: 30091417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects.
    Crowley C; Wong JM; Fisher DM; Khan WS
    Curr Stem Cell Res Ther; 2013 May; 8(3):243-52. PubMed ID: 23317473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue engineering and regenerative medicine strategies in meniscus lesions.
    Pereira H; Frias AM; Oliveira JM; Espregueira-Mendes J; Reis RL
    Arthroscopy; 2011 Dec; 27(12):1706-19. PubMed ID: 22019234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knee Ligament Injury and the Clinical Application of Tissue Engineering Techniques: A Systematic Review.
    Riley TC; Mafi R; Mafi P; Khan WS
    Curr Stem Cell Res Ther; 2018 Feb; 13(3):226-234. PubMed ID: 28914209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model.
    Fan H; Liu H; Toh SL; Goh JC
    Biomaterials; 2009 Oct; 30(28):4967-77. PubMed ID: 19539988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering.
    Font Tellado S; Chiera S; Bonani W; Poh PSP; Migliaresi C; Motta A; Balmayor ER; van Griensven M
    Acta Biomater; 2018 May; 72():150-166. PubMed ID: 29550439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration.
    Chen K; Sahoo S; He P; Ng KS; Toh SL; Goh JC
    Tissue Eng Part A; 2012 Jul; 18(13-14):1399-409. PubMed ID: 22429111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells.
    Sahoo S; Toh SL; Goh JC
    Biomaterials; 2010 Apr; 31(11):2990-8. PubMed ID: 20089300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineering of ligaments for reconstructive surgery.
    Hogan MV; Kawakami Y; Murawski CD; Fu FH
    Arthroscopy; 2015 May; 31(5):971-9. PubMed ID: 25618491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Combination of a Polycaprolactone Fumarate Scaffold with Polyethylene Terephthalate Sutures for Intra-Articular Ligament Regeneration.
    Parry JA; Wagner ER; Kok PL; Dadsetan M; Yaszemski MJ; van Wijnen AJ; Kakar S
    Tissue Eng Part A; 2018 Feb; 24(3-4):245-253. PubMed ID: 28530131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Silk Fiber-Based Scaffold for Regeneration of the Anterior Cruciate Ligament: Histological Results From a Study in Sheep.
    Teuschl A; Heimel P; Nürnberger S; van Griensven M; Redl H; Nau T
    Am J Sports Med; 2016 Jun; 44(6):1547-57. PubMed ID: 26957219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?: A Systematic Review of Preclinical Studies.
    Korpershoek JV; de Windt TS; Hagmeijer MH; Vonk LA; Saris DB
    Orthop J Sports Med; 2017 Feb; 5(2):2325967117690131. PubMed ID: 28321424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence.
    Kon E; Roffi A; Filardo G; Tesei G; Marcacci M
    Arthroscopy; 2015 Apr; 31(4):767-75. PubMed ID: 25633817
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Font Tellado S; Bonani W; Balmayor ER; Foehr P; Motta A; Migliaresi C; van Griensven M
    Tissue Eng Part A; 2017 Aug; 23(15-16):859-872. PubMed ID: 28330431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of selected scaffolds for bone tissue engineering: a systematic review.
    Hosseinpour S; Ghazizadeh Ahsaie M; Rezai Rad M; Baghani MT; Motamedian SR; Khojasteh A
    Oral Maxillofac Surg; 2017 Jun; 21(2):109-129. PubMed ID: 28194530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [RESEARCH PROGRESS OF TISSUE ENGINEERED LIGAMENT].
    Sun Z; Li J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Sep; 29(9):1160-6. PubMed ID: 26750020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering.
    Vaquette C; Kahn C; Frochot C; Nouvel C; Six JL; De Isla N; Luo LH; Cooper-White J; Rahouadj R; Wang X
    J Biomed Mater Res A; 2010 Sep; 94(4):1270-82. PubMed ID: 20694995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic review of decellularized allograft and xenograft-derived scaffolds in bone tissue regeneration.
    Amini Z; Lari R
    Tissue Cell; 2021 Apr; 69():101494. PubMed ID: 33508650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current tissue engineering strategies in anterior cruciate ligament reconstruction.
    Leong NL; Petrigliano FA; McAllister DR
    J Biomed Mater Res A; 2014 May; 102(5):1614-24. PubMed ID: 23737190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.