BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25012938)

  • 1. How medium osmolarity influences dielectrophoretically assisted on-chip electrofusion.
    Hamdi FS; Français O; Dufour-Gergam E; Le Pioufle B
    Bioelectrochemistry; 2014 Dec; 100():27-35. PubMed ID: 25012938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput dielectrophoresis-based cell electrofusion microfluidic device.
    Hu N; Yang J; Yin ZQ; Ai Y; Qian S; Svir IB; Xia B; Yan JW; Hou WS; Zheng XL
    Electrophoresis; 2011 Sep; 32(18):2488-95. PubMed ID: 21853446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microorifice-based high-yield cell fusion on microfluidic chip: electrofusion of selected pairs and fusant viability.
    Gel M; Suzuki S; Kimura Y; Kurosawa O; Techaumnat B; Oana H; Washizu M
    IEEE Trans Nanobioscience; 2009 Dec; 8(4):300-5. PubMed ID: 20142145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectrophoresis-assisted massively parallel cell pairing and fusion based on field constriction created by a micro-orifice array sheet.
    Kimura Y; Gel M; Techaumnat B; Oana H; Kotera H; Washizu M
    Electrophoresis; 2011 Sep; 32(18):2496-501. PubMed ID: 21874655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution analyses of cell fusion dynamics in a biochip.
    Mottet G; Le Pioufle B; Mir LM
    Electrophoresis; 2012 Aug; 33(16):2508-15. PubMed ID: 22899258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On chip electrofusion of single human B cells and mouse myeloma cells for efficient hybridoma generation.
    Kemna EW; Wolbers F; Vermes I; van den Berg A
    Electrophoresis; 2011 Nov; 32(22):3138-46. PubMed ID: 22025094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly controlled electrofusion of individually selected cells in dielectrophoretic field cages.
    Kirschbaum M; Guernth-Marschner CR; Cherré S; de Pablo Peña A; Jaeger MS; Kroczek RA; Schnelle T; Mueller T; Duschl C
    Lab Chip; 2012 Feb; 12(3):443-50. PubMed ID: 22124613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic approach towards hybridoma generation for cancer immunotherapy.
    Lu YT; Pendharkar GP; Lu CH; Chang CM; Liu CH
    Oncotarget; 2015 Nov; 6(36):38764-76. PubMed ID: 26462149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of bulk cell electrofusion in vitro for production of human-mouse heterohybridoma cells.
    Trontelj K; Rebersek M; Kanduser M; Serbec VC; Sprohar M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):124-9. PubMed ID: 18667367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell electrofusion: past and future perspectives for antibody production and cancer cell vaccines.
    Kandušer M; Ušaj M
    Expert Opin Drug Deliv; 2014 Dec; 11(12):1885-98. PubMed ID: 25010248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments.
    Trainito CI; Français O; Le Pioufle B
    Electrophoresis; 2015 May; 36(9-10):1115-22. PubMed ID: 25641658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell hybridization by electrofusion on filters.
    Ramos C; Bonenfant D; Teissie J
    Anal Biochem; 2002 Mar; 302(2):213-9. PubMed ID: 11878799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic control of cell pairing and fusion.
    Skelley AM; Kirak O; Suh H; Jaenisch R; Voldman J
    Nat Methods; 2009 Feb; 6(2):147-52. PubMed ID: 19122668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-cell electrofusion: optimization of electric field amplitude and hypotonic treatment for mouse melanoma (B16-F1) and Chinese Hamster ovary (CHO) cells.
    Usaj M; Trontelj K; Miklavcic D; Kanduser M
    J Membr Biol; 2010 Jul; 236(1):107-16. PubMed ID: 20628737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrofusion between heterogeneous-sized mammalian cells in a pellet: potential applications in drug delivery and hybridoma formation.
    Li LH; Hensen ML; Zhao YL; Hui SW
    Biophys J; 1996 Jul; 71(1):479-86. PubMed ID: 8804630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extent of cell electrofusion in vitro and in vivo is cell line dependent.
    Salomskaite-Davalgiene S; Cepurniene K; Satkauskas S; Venslauskas MS; Mir LM
    Anticancer Res; 2009 Aug; 29(8):3125-30. PubMed ID: 19661325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell electrofusion using nanosecond electric pulses.
    Rems L; Ušaj M; Kandušer M; Reberšek M; Miklavčič D; Pucihar G
    Sci Rep; 2013 Nov; 3():3382. PubMed ID: 24287643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism study on the influences of buffer osmotic pressure on microfluidic chip-based cell electrofusion.
    Xu M; Zhang X; Bai Y; Wang X; Yang J; Hu N
    APL Bioeng; 2024 Jun; 8(2):026103. PubMed ID: 38638144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrofusion of single cells in picoliter droplets.
    Schoeman RM; van den Beld WTE; Kemna EWM; Wolbers F; Eijkel JCT; van den Berg A
    Sci Rep; 2018 Feb; 8(1):3714. PubMed ID: 29487332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified Adherence Method (MAM) for Electrofusion of Anchorage-Dependent Cells.
    Ušaj M; Kandušer M
    Methods Mol Biol; 2015; 1313():203-16. PubMed ID: 25947667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.